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Abstract: In this paper, implicit controls are investigated for different classes of
nonlinear systems, nonaffine systems in pure-feedback form and affine systems in
strict-feedback form. While control system design for general unknown nonaffine
nonlinear systems needs further investigation, elegant control designs are presented
for known systems and systems with unknown scalar parametrization. Though
for affine nonlinear systems, it can be shown that the resulting control laws
are equivalent to that obtainable based on feedback linearization control, the
approaches are fundamentally different. The most important differences/features
are that (i) the implicit control is a function of both states and control signals,
rather than states alone, and (ii) the resulting sampled-data systems are different,
subsequently, their stability results are different. Simulation studies are carried out
to show the validity of the proposed design method. Copyright c©2005 IFAC
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1. INTRODUCTION

Adaptive control of nonlinear systems using feed-
back linearization has been extensively studied
for affine nonlinear systems. However, for many
practical systems, the input variables may not be
in an affine form. Due to the lack of mathematical
tools, control of nonaffine nonlinear systems is
difficult and challenging . In fact, it is impossible
to handle the control problem of the nonaffine
nonlinear system directly because, in general, even
if it is known that the inverse exists, it is impos-
sible to construct it analytically. Consequently,
no control system design is possible along the
lines of conventional model-based control (Ge et
al., 1999a),(Hovakimyan et al., 2002). In (Nesic
et al., 1999), other possible difficulties in dealing

with non-affine systems in general are addressed.
The authors showed that in general there may
not exist a continuous controller for non-affine
systems that yields stable zero dynamics, but a
discontinuous controller may be obtained.

For nonaffine nonlinear systems, several researchers
have suggested to use neural networks as emula-
tors of inverse systems (Jin et al., 1993),(Levin
and Narendra, 1996). Based on implicit function
theory, the NN control methods proposed in (Jin
et al., 1993),(Goh, 1994),(Goh and Lee, 1994)
have been used to emulate the “inverse controller”
to achieve tracking control objectives. Neverthe-
less, no rigorous stability proofs of the closed-
loop systems were given for on-line adaptive NN
control due to the difficulties in analysis. In (Ge et



al., 1999a),(Ge et al., 1999b), stable adaptive NN
control was constructed for nonaffine nonlinear
systems using the Implicit Function Theorem and
the Mean Value Theorem that are not usually
associated with neural network control theory. In
(Hovakimyan et al., 2002), under the assumption
of the existence of an linearizing control, approxi-
mated linearizing feedback control is constructed
for a class of nonaffine nonlinear systems with
the lower bound of the estimate of the control
effectiveness being explicitly given.

The pure-feedback system represents a more gen-
eral class of triangular systems for which no affine
appearance of the variables can be used as virtual
controls. As indicated in (Krstić et al., 1995),
it is quite restrictive to find the explicit virtual
controls to stabilize the pure-feedback systems by
using integrator backstepping. There are only a
handful of results available in the literature using
neural networks to emulate the inverse with ei-
ther very strict restrictions or without rigorous
stability analysis. Only a few results are avail-
able in the literature for the control of nonlin-
ear pure-feedback systems. In (Kanellakipoulos et
al., 1991), (Krstić et al., 1995), only local stability
is achieved in a well defined region around the
origin for parametric pure-feedback systems. By
imposing additional restrictions on the nonlinear-
ities, global stability is obtained for a special case
of the parametric pure-feedback systems in (Seto
et al., 1994). Note that in these papers, the non-
linearities are known smooth functions, and the
unknown parameters occur linearly. In (Simoes et
al., 1996), implicit control laws that are not nec-
essarily smooth are proposed for nonlinear pure-
feedback systems in discrete-time with dynamics
that are completely known.

In this paper, we consider the control system de-
sign based on the explicit construction of implicit
control in continuous-time, and which is readily
applicable to hybrid system implementation (e.g.
sampled data systems). Furthermore, we integrate
our implicit control approach with adaptive con-
trol technique to add robustness to parameter
uncertainties. The advantages of our approach
are that (i) stable control system design can be
easily constructed by exploiting the idea of im-
plicit control system design for general nonaffine
nonlinear systems with known dynamics, (ii) more
flexibility is introduced by allowing the regressor
to depends on both x and u, which makes it
more straightforward to exploit the linearity in the
parameters assumption, (iii) the control system is
free from control singularity problem that appears
in adaptive control for affine nonlinear systems
using feedback linearization control, and (iv) the
increase in the basin of attraction.

2. PROBLEM FORMULATION

In this paper, consider the following class of
nonaffine nonlinear systems, i.e., nonlinear pure-
feedback systems as

ẋi = fi(x̄i, xi+1), 1 < i ≤ n− 1

ẋn = fn(x, u) (1)

where x̄i = [x1, · · · , xi]T ∈ Ri, x = [x1, · · · , xn]T ∈
Rn, u ∈ R are the state variables, and system
input respectively. fi(·, ·), i = 1, ..., n are unknown
smooth functions.

Assumption 1. fi(x̄i, xi+1), i = 1, ..., n − 1, are
C1 for (x̄i, xi+1) ∈ Ri+1 and fn(x, u) are C1 for
(x, u) ∈ Rn+1.

Assumption 2. ∂fi(x̄i, xi+1)/∂xi+1 6= 0, ∀(x̄i, xi+1)
∈ Ri+1 and ∂fn(x, u)/∂u 6= 0, ∀(x, u) ∈ Rn+1.

Remark 1. System (1) covers a large class of non-
linear systems, and includes the class of affine sys-
tems, systems in strict-feedback forms as special
cases. Though intensive research has been carried
out for systems of an affine form, their results
cannot be applied to nonaffine systems. Even if
the description of f(x, u) is known exactly, it is
not easy to design a explicit feedback control for
achieving feedback linearization. When the struc-
ture of f(x, u) is unknown it is even more difficult
to construct the controller.

3. NONAFFINE NONLINEAR SYSTEMS IN
THE LINEAR-IN-THE-PARAMETERS FORM

In this section, let us investigate the class of non-
affine nonlinear systems (1) whose nonlinear func-
tions are in the linear-in-the-parameters (LIP)
form, i.e., fi(x̄i, xi+1) = θT

i ψi(x̄i, xi+1), 1 ≤ i ≤
n− 1, and fn(x, u) = θT

n ψn(x, u).

3.1 First-Order Nonaffine Systems – Ideal Case

It can easily be seen that control system design
can be conveniently carried out, which may other-
wise be difficult, as we are not seeking for the con-
struction of an explicit inverse controller. Inverse
control is carried out implicitly as will be demon-
strated. To show the idea clearly, let us consider
the first order nonaffine nonlinear systems

ẋ1 = f1(x1, u1) (2)

where x1 ∈ R and u1 ∈ R are the state and input
respectively, and f1(x1, u1) = θT

1 ψ1(x1, u1) ∈ R
is a nonaffine function of both x1 and u1, with



θ1 ∈ Rl1 and ψ1(x1, u1) ∈ Rl1 being dimension-
ally compatible constant parameters and known
regressor, respectively.

Remark 2. It is interesting to note that more flex-
ibility is introduced by allowing the regressor to
depend on both x1 and u1, and this makes it more
straightforward to exploit the linearity in the pa-
rameters assumption. For example, f1(x1, u1) =
a1x

2
1 + a2u

3
1 + a3 sin(u1) can be conveniently ex-

pressed as f1(x1, u1) = θT
1 ψ1(x1, u1) where θ1 =

[a1, a2, a3]T and ψ1(x1, u1) = [x2
1, u

3
1, sin(u1)]T .

Note that even for the ideal case when θ1 and
ψ1 are known, it is difficult, if not impossible, to
obtain an explicit expression of the control for a
general nonaffine nonlinear function. As such, the
control problem is by no means trivial.

To solve the problem, add and subtract bu1 on the
right hand side of equation (2), we have

ẋ1 = [θT
1 ψ1(x1, u1)− b1u1] + b1u1 (3)

Consider the implicit control u1 given by

u1 =
1
b1

(−θT
1 ψ1(x1, u1)− k1x1) + u1 (4)

where k1 > 0 and b1 is a design constant. From
(4), we know that u1 is actually the solution of

θT
1 ψ1(x1, u1) + k1x1 = 0 (5)

In theory, the existence of the solution for u1 is
guaranteed provided that ∂[θT

1 ψ1(x1,u1)]
∂u1

6= 0. As
∂f1(x1,u1)

∂u1
= ∂[θT

1 ψ1(x1,u1)]
∂u1

6= 0, which is actually
the controllability condition, we know that the
solution for u1 of equation (5) always exists.

Accordingly, we have ẋ1 = −kx1, which shows
that the closed-loop system is stable and x1(t) =
e−kt + x1(0) will exponentially converge to zero
when t tends to infinity.

Theorem 1. For system (2) satisfying Assump-
tions 1 and 2, implicit control (4) guarantees that
x1 → 0 as t → ∞ and the control signal u1 is
bounded in the closed-loop.

In addition, the advantage of the proposed im-
plicit control can be seen clearly – even for the
ideal case, the explicit solution of equation (5) is
difficult to obtain, while it could be easily solved
by (4) in digital implementation. In the sequel,
we will discuss the issue of stability pertaining to
digital implementation.

Remark 3. Note that b1 is an artificial constant
introduced by the designer for generality. For
the implicit control (4), it seems to be of no

importance. However, it plays an important role
for the corresponding digital implementation for
sampled-data systems as will be demonstrated
later.

3.2 Higher-Order Nonaffine Systems – Ideal Case

For the pure-feedback system (1), the control
problem can be conveniently solved by combining
backstepping and the newly introduced implicit
control design.

The design method for the higher-order systems is
essentially the same as for the first-order counter-
part except that in the intermediate design steps,
the systems’ states will be artificially introduced
to compensate for the lack of affine terms, which
is usually used to construct virtual controls in the
backstepping design.

For clarity, let us define the Lyapunov function
candidate Vi, the intermediate control functions
αi, and the control law as

Vi = Vi−1 +
1
2
z2
i , 1 ≤ i ≤ n (6)

αi =
1
bi

[−bi−1zi−1 − kizi − θT
i,aψi,a] + xi+1,

1 ≤ i ≤ n− 1 (7)

u =
1
bn

[−bn−1zn−1 − knzn − θT
n,aψn,a] + u (8)

where θi,a = [θT
i , ..., θT

1 ]T , and

ψi,a =
[
(1− ξi)ψT

i ,−ξi−1ψ
T
i−1, ...,−ξ1ψ

T
1

]T

with ξj := ∂αi−1
∂xj

, V0 = 0, θ1,a = θ1, ψ1,a = ψ1,
α0 = 0, and z0 = 0.

Step i (1 < i ≤ n − 1). Rewriting the zi

subsystem as zi = xi − αi−1, żi = ẋi − α̇i−1,
and zi+1 = xi+1 − αi, and noting that αi−1 is
the function of x̄i, we have

α̇i−1 =
i∑

j=1

∂αi−1

∂xj
ẋj =

i∑

j=1

∂αi−1

∂xj
θT

j ψj(x̄j , xj+1)

żi = fi(x̄i, xi+1)− α̇i−1 − bixi+1 + bixi+1 (9)

=
[
θT

i,aψi,a(x̄i, xi+1)− bixi+1 + biαi

]
+ bizi+1

Note that the intermediate implicit control given
in (7) has the property

∂αi

∂xi+1
=− 1

bi
(1− ∂αi−1

∂xi
)θT

i

∂ψi(x̄i, xi+1)
∂xi+1

+ 1

Accordingly, the Lyapunov function candidate
given in (6), has time derivative along (7) and
(10) as V̇i = −∑i

j=1 kjz
2
j + bizizi+1, in which the



coupling term bizizi+1 will be handled in the next
steps.

Step n. In the last step, as zn = xn − αn−1 and
αn−1 is a function of x, we have

α̇n−1 =
n∑

i=1

∂αn−1

∂xj
ẋj =

n∑

i=1

∂αn−1

∂xj
θT

j ψj(x̄j , xj+1)

żn =
[
θT

n,aψn,a(x, u)− bnu
]

+ bnu (10)

Consider the Lyapunov function given in (6).
Its time derivative along (8) and (10) is V̇n =
−∑n

i=1 kiz
2
i ≤ 0. Therefore, we can conclude

that the closed-loop system is stable provided that
there exists bounded solution u for the following
equation

−bn−1zn−1 − knzn − θT
n,aψn,a(x, u) = 0 (11)

The existence of the solution for u1 of equation
(11) could be guaranteed provided that

∂

∂u
[θT

n,aψn,a(x, u)] 6= 0 (12)

From the definition of ψn,a, we have

∂

∂u
[θT

n,aψn,a(x, u)] = θT
n,a(1− ∂αn−1

∂xn
)
∂ψn(x, u)

∂u

(13)

As ∂fn(x,u)
∂u 6= 0, which is the controllability

condition, and ∂fn(x,u)
∂u = θT

n
∂ψn(x,u)

∂u , we know
that (12) holds provided that (1 − ∂αn−1

∂xn
) 6= 0.

From (7), we know that this is equivalent to

θT
n−1(1−

∂αn−2

∂xn−1
)
∂ψn−1(x̄n−1, xn)

∂xn
6= 0. (14)

As ∂fn−1(x̄n−1,xn)
∂xn

6= 0, which is the controllability

condition, and ∂fn−1
∂xn

= θT
n−1

∂ψn−1
∂xn

, we know

that (14) holds provided that (1 − ∂αn−2
∂xn−1

) 6=
0. Following the similar analysis backwards by
noting that ∂fi

∂xi+1
= θT

i
∂ψi

∂xi+1
6= 0, we obtain that

(12) holds provided that (1 − ∂α1
∂x2

) 6= 0 which is
actually equivalent to θT

1
∂ψ1
∂x2

6= 0, which is surely
satisfied as it is the controllability condition of the
original system.

Theorem 2. For system (1) satisfying Assump-
tions 1 and 2, implicit control (8) guarantees that
x1 → 0 as t →∞, the control signal u exists and
bounded, and all other signals in the closed-loop
are bounded.

In the ideal case that θi are known, the advantage
of the implicit control lies in that the control
u can be easily solved by (8) in digital imple-
mentation while it is usually difficult to obtain

the explicit solution from (11). In addition, the
existence of the solution for u is again guaranteed
by the controllability condition for the higher-
order nonaffine systems, and there is no additional
condition regarding to the existence compared to
its first-order counterpart. When the parameters
are unknown, the control problem becomes much
more complex, and only very restrictive classes of
systems can be handled. Due to space limitation,
it is omitted here.

4. APPLICATION TO AFFINE NONLINEAR
SAMPLED DATA SYSTEMS

The implicit controller derived in this paper is
a function of not only the states, but also the
control input itself, and thus has a form naturally
suited for digital implementation in sampled data
systems, given mild conditions of smoothness of
input. In this section, we illustrate this concept
clearly with a simple first order nonlinear system,
given by

ẋ = ax2 + gu = f(x, u) + bu (15)

where f(x, u) := ax2 + gu − bu = θT ψ(x, u) − bu
with θ = [a, g]T , and ψ(x, u) = [x2, u]T ; constant
g > 0 to satisfy controllability of the system;
and constant b > 0 is a design control parameter
whose role in the stability of the sampled data
system will be investigated in this section. We
will consider two cases – where the parameter θ is
known, and where it is unknown.

4.1 Known Case

For simplicity, let us consider the case that f(x, u)
is known first. From (15), we know that

u =
1
b
(−f(x, u)− cx), b, c > 0 (16)

is stabilizing as it renders the closed-loop system
as ẋ = −cx.

In the analogue world, we could indeed assume
that u(k +1) = u(k), where u(k +1) and u(k) de-
note u(τk+1) and u(τk), respectively. Accordingly,
stable control (16) could be easily implemented as

u(k + 1) =
1
b
(−ax2(k)− gu(k) + bu(k)− cx(k))

(17)

where x(k) denotes x(τk); u(k + 1) and u(k)
denote the control signals of the next and current
sampling intervals, respectively.

For digital implementation, implementation (17)
is not necessarily equivalent to feedback lineariza-
tion because u(k +1) 6= u(k) in general. However,



under the assumption that u(t) is smooth enough,
the error might be acceptable and the closed-loop
system is stable under certain mild conditions.

As the resulting closed system is indeed a hybrid
system, its stability should be analyzed in detail
using the stability criterion for sampled data sys-
tems. In fact, the closed-loop hybrid system is
given by

ẋ(t) = ax2(t) + gu(τk), τk ≤ t < τk+1 (18)

u(τk+1) = (1− g

b
)u(τk)− a

b
x2(τk)− c

b
x(τk)

Its local stability can be investigated for the
linearized system. Define f(x, u) = ax2 + gu and
g(x, u) = (1− g

b )u− a
b x2 − c

bx.

Linearizing the system (19) about the point
(xe, ue) = (0, 0), we obtain the system

ẏ(t) =
[

A B
0 0

]
y(t) + F̃ (y(t)), τk ≤ t < τk+1, (19)

y(t) =
[

I 0
D C

]
y(t−) + H̃(y(t−)), t = τk+1, k ∈ N

where A = 0, B = g, C = 1− g
b , D = − c

b , and

lim
y→0

‖F̃ (y)‖
‖y‖ = 0, lim

y→0

‖H̃(y)‖
‖y‖ = 0 (20)

According to Theorem 2.2 in (Michel and Hu,
1999), if ‖Uk‖ ≤ 1, the system (19) is uniformly
asymptotically stable. We have ‖Uk‖ = |1− g

b | < 1
which leads to the stability condition 0 < g

b < 2.

Note that the larger the b chosen, the more stable
the system will be. This condition will be verified
by the following simulation studies.

Simulation Studies Consider the same system as
(15) with a = 3 and g = 2. The feedback gain is
chosen as c = 2.0. The initial condition is x(0) =
2. According to the condition for bounded control
input, 0 < g/b < 2, i.e., b > 1. For comparison,
simulations are conducted for b = 1.01, b = 1, and
b = 0.99. Fig. 1 shows the trajectory of the state
and Fig. 2 plots the control input. From Fig. 1 and
Fig. 2, it can be seen that the choice of b is critical.
When b is chosen as b ≤ 1, the system state does
not converge to the origin and the control input
takes large values.

4.2 Unknown Case

For comparsion, let us consider the case that
the parameters are unknown constants. Define
sampling interval T = τk+1 − τk. A feasible
implementation of the parameter estimation law
is

â(τk+1) = â(τk) + Tγ1x
3(τk)

ĝ(τk+1) = ĝ(τk) + Tγ2x(τk)u(τk)

where γ1,γ2 > 0. Noting that ã = a− â, g̃ = g− ĝ,
the closed-loop system can be written as

ẋ(t) = ax2(t) + gu(τk)

u(τk+1) = (1− g − g̃(τk)
b

)u(τk)− a− ã(τk)
b

x2(τk)

−c

b
x(τk) (21)

Following the same procedure, linearizing the sys-
tem about the equilibrium point (xe, ãe, g̃e, ue) =
(0, 0, 0, 0), we can obtain ‖Uk‖ = |(1−eT )2(1− g

b )|
i.e.,

b <
g

1− 1
(1−eT )2

or b >
g

1 + 1
(1−eT )2

(22)

It is clear that the stability of the adaptive con-
troller is directly influenced by the size of the
sampling interval, T , in the local sense. This also
verifies the fact that, as the complexity of the
system increases, more stringent requirements are
expected and much more complex behavior will
be observed.

However, it is found in the simulation that the
closed-loop system becomes unstable for certain
choices of b satisfying the condition in (22). There-
fore, for such b satisfying (22), although the
closed-loop stability is guaranteed for the lin-
earized system characterized by (A,B, C, D), this
is not the case for its original hybrid system (21).
Further analysis should be done!

Simulation Studies Consider the same system as
(15). From the system parameters, let us choose
b = 3.1, b = 0.8005 and b = 10 respectively.
The trajectories of state and control input are
illustrated in Fig. 3 and Fig. 4. It is found that the
system is unstable for b < 0.8. The convergence of
the parameter estimations for b = 3.1 is shown in
Fig. 5.

5. CONCLUSION

Implicit control design has been presented for
different classes of nonlinear systems, including
nonaffine systems in pure-feedback form and affine
systems in strict-feedback form. The differences
between the proposed method and the feedback
linearization based control have been stated. The
stability issue arising from the digital implementa-
tion of the proposed control, which has resulted in
a hybrid system, has been discussed and the sta-
bility condition has been given. Simulation studies
show the validity of the proposed design.
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