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Abstract: Recognition of temporal/dynamical patterns is among the most difficult
pattern recognition tasks. In this paper, based on a recent result on deterministic
learning theory, a unified, deterministic approach is proposed for effective represen-
tation and rapid recognition of dynamical patterns. Firstly, it is shown that time-
varying dynamical patterns can be effectively represented in a time-invariant and
spatially-distributed manner through deterministic learning. Then, by characterizing
the similarity of dynamical patterns based on the system dynamics inherently within
them, a dynamical recognition mechanism is proposed. Rapid recognition of dynamical
patterns can be implemented when state synchronization is achieved according to a
kind of indirect and dynamical matching on system dynamics. The synchronization
errors can be taken as the measure of similarity between the test and training patterns.
The significance of the paper is that the problem of dynamical pattern recognition
is turned into a problem of stability and convergence of a closed-loop recognition
system, so that a completely dynamical approach is presented for rapid recognition
of dynamical patterns. Copyright c©2005 IFAC
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1. INTRODUCTION

Humans generally excel in dealing with temporal
patterns. Human recognition of temporal patterns
is an integrated process, in which patterns of in-
formation distributed over time can be effectively
identified, represented, and classified (Covey et al.,
1993). These recognition mechanisms, although not
fully understood, are quite different from the ex-
isting neural network and statistical approaches
for pattern recognition (Bishop, 1995; Jain et al.,
2000; Webb, 2002). So far, only limited success has
been reported in the literature for temporal pattern
recognition.

In this paper, we investigate the recognition of a
class of temporal patterns generated from nonlin-
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ear dynamical systems. Specifically, we consider a
general nonlinear dynamical system:

ẋ = F (x; p), x(t0) = x0 (1)

where x = [x1, · · · , xn]
T ∈ Rn is the state of the

system, p is a system parameter vector, F (x; p) =
[f1(x; p), · · · , fn(x; p)]

T is a smooth but unknown
nonlinear vector field. Assume that (i) the system
state x(t) is uniformly bounded, and the system
trajectory starting from x0, denoted as ϕζ(x0; p),
is in either periodic or periodic-like (recurrent)
motion. This kind of periodic or recurrent motion
is defined in this study as a dynamical pattern, and
is denoted as ϕζ for concise presentation.

It has been reported that nonlinear dynamical sys-
tems are capable of exhibiting various types of dy-
namical patterns (Rabinovich, et al., 2000). The
recognition process of such dynamical patterns con-



sists of two phases: the identification phase and the
recognition phase. Here, “identification” involves
working out the essential features of the pattern one
does not recognize, while “recognition” means look-
ing at a pattern and realizing that it is the same or a
similar pattern to one seen earlier. For identification
of dynamical patterns, we recently proposed a the-
ory of deterministic learning of nonlinear dynamical
systems (Wang et al., 2003), in which localized RBF
neural networks are employed, and locally accurate
NN approximation of the system dynamics can be
achieved. A brief review of the deterministic learn-
ing theory will be given in Section 2.

In temporal pattern recognition, a very difficult and
fundamental problem is how to appropriately rep-
resent a time-varying pattern. Another important
problem is the definition of similarity between two
temporal (or dynamical) patterns. As dynamical
patterns evolve with time, the existing similarity
measures developed for static patterns do not seem
appropriate for dynamical patterns. For this reason,
there is no standard similarity definition for dynam-
ical patterns in the current literature.

To solve the problems and to achieve dynamical
pattern recognition, in this paper, we firstly propose
that, by using the constant RBF networks obtained
through deterministic learning, the time-varying
dynamical patterns can be effectively represented
by the locally accurate NN approximations of the
underlying system dynamics. This representation
is time-invariant and spatially-distributed, using a
kind of complete information of both state and
dynamics of dynamical patterns.

Secondly, we give two definitions for similarity of dy-
namical patterns based on system dynamics. From
the qualitative analysis of nonlinear dynamical sys-
tems, it is understood that the similarity between
two dynamical behaviors lies in the topological equiv-
alence of two dynamical systems (Shilnikov et al.,
2001). Subsequently, it can be concluded that the
similarity of dynamical patterns is determined by
the topological similarity of the system dynamics
inherently within these dynamical patterns. The
issues of representation and similarity of dynamical
patterns will be discussed in Section 3.

Finally, based on the time-invariant representa-
tion and the similarity definition, we propose a
mechanism for rapid recognition of dynamical pat-
terns. Using the constant RBF networks obtained in
the identification phase, we construct a dynamical
model for each training dynamical pattern. When a
test pattern similar to one of the training patterns is
presented, the closed-loop recognition system, con-
sisting of the system generating the test pattern and
the dynamical model corresponding to the training
pattern, will achieve a form of exponential conver-
gence (or state synchronization). The synchroniza-
tion is yielded by indirect and dynamical matching
of system dynamics, and the test dynamical pattern
is thus being recognized as similar to a training pat-

tern. The synchronization errors will be proven to be
proportional to the differences of system dynamics,
and thus can be taken as similarity measures be-
tween the test and the training dynamical patterns.

The significance of the paper is that a completely
dynamical approach is presented in the sense that
the problem of dynamical pattern recognition is
turned into a problem of stability and convergence
of a closed-loop recognition system. The proposed
approach can distinguish and classify dynamical
patterns with qualitatively different behaviors, and
can assign dynamical patterns based on the similar-
ity of system dynamics to predefined classes.

2. REVIEW OF DETERMINISTIC LEARNING

In this section, we present a brief review of the
deterministic learning theory (Wang et al, 2003),
which is essential for identification of dynamical
patterns. Elements of deterministic learning include:
(i) employment of the localized RBF neural net-
work, (ii) satisfaction of a partial PE condition, (iii)
guaranteed exponential stability of a closed-loop
identification system, and (iv) partial parameter
convergence and locally-accurate NN identification
of the dynamics F (x; p) of system (1).

2.1 Dynamical Localized RBF Networks

The following dynamical RBF network is employed:

˙̂xi = −ai(x̂i − xi) + ŴT
i Si(x), i = 1, · · · , n (2)

where x̂i is the state of the dynamical RBF network,
xi is the state of system (1), ai > 0 is a design

constant, and ŴT
i Si(x) is a localized RBF network

described by

ŴT
i Si(Z) =

Ni∑

j=1

ŵijsij(Z) (3)

where Z ∈ ΩZ ⊂ Rq is the input vector,

Ŵi = [ŵi1, · · · , ŵiNi
]T ∈ RNi is the weight vector,

Ni > 1 is the NN node number, and Si(Z) =
[si1(Z), · · · , siNi

(Z)]T , with sij(·) being the radial
basis functions. Commonly used RBFs include the
Gaussian function and the inverse Hardy’s multi-
quadric function, both of which are localized basis
functions in the sense that sij(Z)→ 0 as ‖Z‖ → ∞
(Powell, 1992).

It has been shown (e.g. (Powell, 1992)) that for any
continuous function f(Z) : ΩZ → R, where ΩZ ⊂
Rq is a compact set, and for the NN approximator
(3) (the node number N is sufficiently large), there
exists an ideal constant weight vector W ∗ such that
for each ε∗ > 0

f(Z) = W ∗TS(Z) + ε(Z), ∀Z ∈ ΩZ (4)

where |ε(Z)| < ε∗ (ε(Z) is denoted as ε hereafter to
simplify the notation).



For localized RBF networks, the spatially localized
learning capability implies that for any point Zζ , or
any bounded trajectory Zζ(t) within the compact
set ΩZ , f(Z) can be approximated by using a lim-
ited number of neurons located at the neighborhood
of the point, or in a local region along the trajectory:

f(Z) = W ∗T
ζ Sζ(Z) + εζ (5)

where Sζ(Z) = [sj1(Z), · · · , sjζ (Z)]
T ∈ RNζ is a

subvector of S(Z) with Nζ < N , |sjk | > ι (jk =
j1, · · · , jζ), with ι being a small positive constant,
and εζ is the approximation error, with |εζ | − |ε|
being small.

It is well know that the concept of the PE condition
is of great importance in adaptive systems, however,
it is very difficult for the a priori verification (Naren-
dra and Annaswamy, 1989). Based on some recent
results on the PE condition (Kurdila et al., 1995, Lu
& Basar, 1998), we indicated explicitly in (Wang et
al., 2003) that any periodic or recurrent trajectory
Z(t) can lead to PE of a regression subvector Sζ(Z)
consisting of RBFs with centers located in a small
neighborhood of Z(t).

2.2 Exponential Stability and Accurate Identification

The NN weight adaptation law is given by:

˙̂
W i =

˙̃
W i = −ΓiSi(x)x̃i − σiΓiŴi, i = 1, · · · , n(6)

where W̃i = Ŵi −W ∗

i , Ŵi is the estimate of W ∗

i ,
Γi = ΓT

i > 0, and σi > 0 is a small value.

By using the localization property of RBF networks,
along the orbit ϕζ(x0) the closed-loop identification
system, consisting of the nonlinear dynamical sys-
tem (1), the dynamical RBF network (2), and the
NN weight adaptation law (6), is described by:
[

˙̃xi
˙̃
W ζi

]
=

[
−ai Sζi(ϕζ)

T

−ΓζiSζi(ϕζ) 0

][
x̃i

W̃ζi

]
+

[
−εζi

−σiΓζiŴζi

]
(7)

and

˙̂
W ζ̄i =

˙̃
W ζ̄i = −Γζ̄iSζ̄i(ϕζ)x̃i − σiΓζ̄iŴζ̄i (8)

in which subscript (·)ζi is defined in (5) and (·)ζ̄i
represents complement to (·)ζi, and |εζi| is close to
|εi|.

The following theorem is useful in identifying the
system dynamics F (x; p) in system (1):

Theorem 1. (Wang et al., 2003) Consider the closed-
loop adaptive system, consisting of the nonlinear
dynamical system (1), the dynamical RBF network
(2), and the NN weight updating law (6). For any
periodic or recurrent trajectory ϕζ(x0), starting
from an initial condition x0 = x(0) ∈ Ω, and with

initial values Ŵi(0) = 0, we have: (i) the neural-

weight estimates Ŵζi (as given in (7)) converge to

small neighborhoods of their optimal values W ∗

ζi,

and the neural weights Ŵζ̄i will remain small and

constant; (ii) the RBF network ŴT
i Si(x) can ap-

proximate the dynamics fi(x; p) along the trajectory
ϕζ(x0) as:

fi(ϕζ ; p) = ŴT
i Si(ϕζ) + εi1 (9)

where |εi1 | is close to |εi|; and (iii) the system
dynamics fi(x; p) along the orbit ϕζ(x0) can be
described using constant RBF networks as

fi(ϕζ ; p) =W
T

i Si(x) + εi2 (10)

where |εi2 | is small and is close to |εi1 |, and W i is
obtained from

W i = meant∈[ta,tb]Ŵi(t) (11)

where tb > ta > 0 represent a time segment after
the transient process.

Remark 1. The NN weights updating law (6) is sim-
ilar to the Lyapunov-based learning laws developed
in the literature of adaptive neural control, e.g.
(Ge and Wang, 2001). The novelty of determinis-
tic learning lies in the satisfaction of a partial PE
condition, which is generally not achieved in the
literature. With the satisfaction of the partial PE
condition of Sζi(ϕζ), locally-accurate NN approxi-
mation of F (x; p) is achieved.

3. REPRESENTATION AND SIMILARITY

In conventional static pattern recognition, a pat-
tern is usually a set of time-invariant measure-
ments or observations represented in vector or ma-
trix notation (Bishop, 1995; Jain et al., 2000).
For example, in statistical pattern recognition, a
pattern is represented by a set of d features, or
a d-dimensional feature vector which yields a d-
dimensional feature space. Subsequently, the task
of recognition or classification is accomplished when
the d-dimensional feature space is partitioned into
compact and disjoint regions, and decision bound-
aries are constructed in the feature space which sep-
arate patterns from different classes into different re-
gions (Jain et al., 2000; Webb, 2002). For dynamical
patterns, since the measurements are mostly time-
varying in nature, the above framework for static
patterns may not be suitable for representation of
dynamical patterns.

3.1 A Time Invariant and Spatially Distributed

Representation

As introduced in Section 2, the system dynam-
ics F (x; p) = [f1(x; p), · · · , fn(x; p)]

T of a dynami-
cal pattern ϕζ can be accurately approximated by



W
T

i Si(x) (i = 1, · · · , n) in a local region along the
periodic or recurrent orbit of the dynamical pattern

ϕζ . The constant RBF network W
T

i S(x) consists of
two types of neural weights: (i) For neurons whose
centers are close to the orbit ϕζ(x0), their neural

weights, Ŵζi, converge exponentially to a small
neighborhood of their optimal values, W ∗

ζi; and (ii)
for the neurons with centers far away from the

orbit ϕζ(x0), the neural weights, Ŵζ̄i, will remain
almost constant. Thus, constant neural weights are
obtained for all neurons of the entire RBF network
W

T

i Si(x). Accordingly, from Theorem 1 and equa-
tions (10), we have the following statements con-
cerning the representation of dynamical patterns.

(i) A dynamical pattern ϕζ can be represented

by using the constant RBF network W
T

i Si(x),
which provides a locally accurate NN approx-
imation of the time-invariant system dynam-
ics fi(ϕζ ; p). This representation, based on the
fundamental information extracted from the
dynamical pattern ϕζ , is independent of the
time attribute. Therefore, we provide an effec-
tive solution to the problem of representation
of time-varying dynamical patterns.

(ii) The representation by W
T

i Si(x) is spatially-

distributed in the sense that relevant informa-
tion is stored in a large number of neurons
distributed along the orbit of the dynamical
pattern. Intuitively, this spatially-distributed
information implies that a representation using
a limited number of extracted features (as in
statistical pattern recognition) is probably in-
complete for representation of dynamical pat-
terns.

(iii) Since the NN approximation represented in

W
T

i S(x) is only accurate in a local region along
the orbit ϕζ(x0), this local region (denoted by
Ωϕζ

) can be described by:

Ωϕζ
:=

{
x
∣∣∣ dist(x, ϕζ) < d⇒

|W
T

i S(x)− fi(ϕζ ; p)| < ξ∗i

}
(12)

where d, ξ∗i > 0 are constants, ξ∗i is the approxi-
mation error that is close to ε∗i within Ωϕζ

. This

knowledge stored in W
T

i Si(x) can be recalled
in a way that whenever the NN input Z(=
x) enters the region Ωϕζ

, the RBF network

W
T

i Si(x) will provide accurate approximation
to the previously learned dynamics fi(ϕζ ; p).

Note that the representation by W
T

i Si(x) will not
be used directly for recognition, i.e., recognition
by direct comparison of the corresponding neural
weights. Instead, for a training dynamical pattern
ϕζ , we construct a dynamical model using the

constant W
T
S(x) = [W

T

1 S1(x), · · · ,W
T

nSn(x)]
T as:

˙̄x = −B(x̄− x) +W
T
S(x) (13)

where x̄ = [x̄1, · · · , x̄n]
T is the state of the dy-

namical model, x is the state of an input pattern
generated from system (1), B = diag{b1, · · · , bn}
is a diagonal matrix, with bi > 0 normally smaller
than ai (ai is given in (2)). As will be detailed in the
following sections, this dynamical model will be used
as a representative of the training dynamical pattern
ϕζ in the construction of a recognition system for
rapid recognition of test dynamical patterns.

3.2 A Fundamental Similarity Measure

In the literature of pattern recognition, there are
many definitions for similarity of static patterns,
e.g., Euclidean distance, Manhattan distance, and
cosine distance (Webb, 2002). To define the similar-
ity of two dynamical patterns, the existing similarity
measures developed for static patterns might be-
come inappropriate. The dynamical patterns evolve
with time and the effects of different initial condi-
tions or system parameters influence the occurrence
of dynamical patterns.

To be specific, consider the dynamical pattern ϕζ

(as given by (1)), and another dynamical pattern
(denoted as ϕς) generated from the following non-
linear dynamical system:

ẋ = F ′(x; p′), x(t0) = xς0 (14)

where the initial condition xς0, the system parame-
ter vector p′, and subsequently the nonlinear vector
field F ′(x; p′) = [f ′1(x; p

′), · · · , f ′n(x; p
′)]T , are possi-

bly different with those for dynamical pattern ϕζ .
Since small changes in x(t0) and p′ (or p in (1))
may lead to large change of x(t), it is clear that the
similarity of dynamical patterns ϕζ and ϕς cannot
be established by using only the time-varying states
x(t) of the patterns, or by some non-fundamental
features extracted from x(t).

In the qualitative analysis of nonlinear dynamical
systems (e.g., Shilnikov et al., 2001), the contem-
porary understanding of the similarity between two
dynamical behaviors lies in the topological equiva-

lence of two dynamical systems. It is understood
from the studies on nonlinear dynamical systems,
that the similarity of dynamical patterns is deter-
mined by the topological similarity of the system dy-
namics inherently within these dynamical patterns.
Accordingly in this paper, we propose the following
definition of similarity for dynamical patterns based
on information from both system dynamics and
system states.

Definition 1. Dynamical pattern ϕς (given by (14))
is said to be similar with dynamical pattern ϕζ

(given by (1)), if the state of pattern ϕς stays
within a neighborhood region of pattern ϕζ , and
the difference between the corresponding system
dynamics is small along the state of pattern ϕς , i.e.,:



|f ′i(x; p
′)− fi(x; p)| < ε∗i ,∀x ∈ ϕς(xς0; p

′) (15)

where ε∗i > 0 is the similarity measure between the
two dynamical patterns.

Remark 2. It is seen that the above similarity def-
inition is related to both the states and system
dynamics of the two dynamical patterns. It is based
on the fundamental information of system dynamics
of the two patterns, i.e., fi(x; p) and f

′

i(x; p
′), which

are by definition time-invariant. The state informa-
tion of the two patterns is also involved; however, it
is not required that states of the two patterns match
(exactly) in phase space or occur identically.

According to the definition, pattern ϕς being sim-
ilar to pattern ϕζ does not necessarily imply that
the reverse is true. On the other hand, when the
dynamics of pattern ϕζ has been accurately iden-
tified within a local region, Ωϕζ

(as described by
(12)), and effectively represented by constant RBF

network W
T
S(x), we can further investigate how

pattern ϕς is recognized to be similar to pattern ϕζ .

Combining (12) with (15), when the state x of the
pattern ϕς stays within the local region Ωϕζ

, we
have

dist(x, ϕζ) < d⇒

max
x∈ϕς(xς0;p′)

∣∣∣f ′i(x; p′)−W
T

i Si(x)
∣∣∣<ε∗i + ξ∗i (16)

which shows that the difference of system dynamics
of patterns ϕς and ϕζ is expressed in terms of

fi(x; p
′) and W

T

i S(x). Thus, from Definition 1 we
have

Definition 2. Dynamical pattern ϕς (given by (14))
is recognized to be similar with dynamical pattern
ϕζ (based on the identification of ϕζ), if the state
of pattern ϕς stays within the local region Ωϕζ

(as described by (12)), and the difference between
the corresponding system dynamics, as expressed in
(16), is small along the state of pattern ϕς .

This definition will be useful for the purpose of rapid
recognition of ϕς in Section 4.

4. DYNAMICAL PATTERN RECOGNITION

4.1 Problem Formulation

Consider a training set containing dynamical pat-
terns ϕk

ζ , k = 1, · · · ,M , with the kth training pat-

tern ϕk
ζ generated from

ẋ = F k(x), x(t0) = xkζ0 (17)

where pk is the system parameter vector. As
shown in Section 2, the system dynamics F k(x) =
[fk1 (x), · · · , f

k
n(x)]

T can be accurately identified

and stored in constant RBF networks W
kT

S(x) =

[W
k

i

T

S(x), · · · ,W
k

n

T

S(x)]T .

Consider dynamical pattern ϕς (given by (14)) as
a test pattern. Without identifying the system dy-
namics of the test pattern ϕς , the recognition prob-
lem is to search rapidly from the training dynamical
patterns ϕk

ζ (k = 1, · · · ,M) for those similar to the
given test pattern ϕς in the sense of Definition 2.

4.2 Rapid Recognition via Synchronization

In this subsection, we present how rapid recogni-
tion of dynamical patterns can be implemented by
synchronization. Specifically, for the kth training
pattern, a dynamical model is constructed based on

the time-invariant representation W
kT

S(x) as:

˙̄xk = −B(x̄k − x) +W
kT

S(x) (18)

where x̄k = [x̄k1 , · · · , x̄
k
n]

T is the state of the dy-
namical (template) model, x is the state of an
input test pattern generated from (14), and B =
diag{b1, · · · , bn} is a diagonal matrix which is kept
the same for all training patterns. Note that bi
(1 ≤ i ≤ n) is not chosen as a large value. Then,
corresponding to the test pattern ϕς and the dy-
namical model (18) for the training pattern ϕk

ζ , we
obtain the following closed-loop recognition system:

˙̃xki =−bix̃
k
i +W

k

i

T

Si(x)− fi(x, p
′)

i = 1, · · · , n (19)

where x̃ki = x̄ki − xi is the state tracking error.

Note that without identifying the system dynamics
of the test pattern ϕς , the difference on system
dynamics of the test and training patterns, i.e.,

|W
k

i

T

Si(x) − fi(x, p
′)|, is not available from direct

computation. Nevertheless, it will be shown that
the difference between system dynamics can be
explicitly measured by |x̃ki |. Thus, if the state x̄ki
of the dynamical model (18) tracks closely to (or
synchronize with) the state x of dynamical pattern
ϕς , i.e., |x̃

k
i | is small, then the test pattern ϕς can

be recognized as similar to the training pattern
ϕk
ζ in the sense of Definition 2. Note that the

synchronization is not achieved between the states
of dynamical patterns ϕς and ϕk

ζ .

The following theorem describes how a test dynam-
ical pattern is rapidly recognized in a dynamical
process by synchronization.

Theorem 2. Consider the closed-loop recognition
system (19) corresponding to test pattern ϕς and
the dynamical model (18) for training pattern ϕk

ζ .

Then, the synchronization error x̃k is proportional
to the difference of system dynamics of the test and



training patterns. Further, the test pattern ϕς is rec-
ognized as similar to the training pattern ϕk

ζ if the

state x̄k of the dynamical model (18) synchronizes
with the state x of test pattern ϕς .

Proof: See (Wang and Hill, 2005). ♦

Remark 3. Recognition of a test dynamical pattern
is turned into a problem of stability and convergence
of closed-loop recognition system (19). Without
identifying the system dynamics F ′(x; p′) of the test
pattern ϕς , and so without comparing directly the
system dynamics, the recognition of a test pattern
is achieved according to a kind of indirect matching
of the system dynamics. The synchronization error
|x̃i| can be taken as the measure of similarity on
system dynamics, and subsequently, the measure of
similarity between the test and training patterns.

Remark 4. The recognition of test pattern ϕς is
also achieved rapidly, since the recognition process
takes place from the beginning of measuring the
state x of test pattern ϕς . No feature extraction in
conventional pattern recognition is required. Com-
plicated computations for comparisons of the states
of dynamical patterns, or for matching directly the
system dynamics of dynamical patterns are also
avoided. The rapid recognition is naturally imple-
mented when the closed-loop recognition system
(19) achieves exponential stability such that expo-
nential synchronization is obtained.

5. CONCLUDING REMARKS

In this paper, we have proposed an effective ap-
proach for representation and rapid recognition of
dynamical patterns. The elements of the recognition
approach include: (i) a time-invariant and spatially-
distributed representation for dynamical patterns;
(ii) a similarity measure based on system dynamics;
and (iii) a mechanism in which rapid recognition is
achieved by state synchronization.

The proposed recognition approach will facilitate
further construction of recognition systems for tem-
poral/dynamical patterns. Specifically, the recogni-
tion system can be constructed using many dynam-
ical (template) models (as described in (18)). Each
of the dynamical models represents one training
dynamical pattern. Since the similarity between the
test and training dynamical patterns can be mea-
sured using the synchronization errors, the recog-
nition system can be built up by using the nearest
neighbor classification — a commonly used classifi-
cation algorithm in pattern recognition (Jain et al.,
2000).

The constructed recognition system promises to be
able to classify different classes of dynamical pat-
terns, and distinguish a set of dynamical patterns
generated from the same class. It can also be de-
signed to identify bifurcation points, which is an
important task for many industrial applications,

such as in power systems. Extensions of the current
work will explore these aspects and employ the
recognition system in a human-like control strategy.
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