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Abstract: A control profile is generated which suppresses all the resonant dynamics in a
hard disk drive flexible arm. This control profile has both the drive voltage and velocity
constraints which are required in hard disk drive long seek control. The control profile is
generated from the sloped fast acceleration command and the vibration suppression shape
filter technology. The simulation results for hard disk drive long seek control illustrate the
effectiveness of the proposed method. Copyright c©2005 IFAC
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Fig. 1. A typical mechanical flexible system.

1. INTRODUCTION

Control of flexible structures has been extensively
studied in recent years. Flexible structures such as
high-speed disk drive actuators require extremely pre-
cise positioning under very tight time constraints.
Whenever a fast motion is commanded, residual vi-
bration in the flexible structure is induced, which in-
creases the settling time. One solution is to design a
closed-loop controller to damp out vibrations caused
by the command inputs and disturbances to the plant.
However, the resulting closed-loop response may still
be too slow to provide an acceptable settling time,
and the closed-loop control is not able to compensate
for high frequency residual vibration which occurs
beyond the closed-loop bandwidth. An alternative ap-
proach is to develop an appropriate reference trajec-
tory that is able to minimize the excitation energy
imparted to the system at its natural frequencies.

1 Supported by the National Science Foundation, grant number
9978748, and Seagate Technology LLC of Oklahoma City, Okla-
homa.

Fig. 1 shows a typical mechanical flexible system,
where 1

s is an integrator, Kv is a velocity constant
gain, and Kp is a position constant gain. The high fre-
quency modes can be described as a transfer function
R(s) = limn→∞

bnsn+bn−1sn−1+···+b1s+1
ansn+an−1sn−1+···+a1s+1 in which

an infinite number of lightly damped resonant struc-
tures is possible. The goal of vibration suppression
trajectory generation is to find a fast input trajectory,
under some physical constraint, with minimum possi-
ble residual vibration.

In the previous study (Zhou and Misawa, 2005b), a
control profile is generated which suppresses all the
resonant dynamics in a flexible dynamic system. The
proposed methods (Zhou and Misawa, 2005b) develop
a vibration suppression control profile in the hard disk
drive short seek control. In (Zhou and Misawa, 2005c),
a vibration suppression control profile generation with
both acceleration and velocity constraints is studied.
The proposed method (Zhou and Misawa, 2005c) de-
velops a vibration suppression control profile for hard
disk drive long seek control. The control profile has
both the drive current (or acceleration) and velocity
constraints. In real application, the drive current does
no saturate. It is the applied drive voltage that sat-
urates. This paper presents a vibration suppression
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Fig. 2. Time-Optimal control profiles with both accel-
eration and velocity constraints.
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Fig. 3. The voice coil servo motor dynamics.

control profile generation method with both the drive
applied voltage and velocity constraints.

2. LONG SEEK CONTROL PROFILE WITH
BOTH APPLIED VOLTAGE AND VELOCITY

CONSTRAINTS

For a purely rigid body, it can be inferred that the time-
optimal acceleration profile with velocity constraint is
composed by three parts. First, acceleration is com-
manded which always reaches the maximum limit.
Secondly, when the maximum velocity is reached, the
acceleration command becomes zero. In this situation,
the rigid body is cruising with a constant velocity. The
third part is a deceleration command which always
reaches the minimum limit. Fig. 2 shows typical time-
optimal control profiles with both acceleration and
velocity constraints.

Fig. 3 shows a simplified hard disk drive voice coil
servo motor dynamics. The applied voltage Va is the
sum of the control voltage Vc and the back-emf volt-
age Vb. The control voltage in terms of motor current
command i is Vc = Ri + L di

dt , where L is the ar-
mature inductance and R is the armature resistance.
The back-emf voltage in terms of the arm velocity vel
is Vb = Kevel, where Ke is the back-emf constant.
Since the back-emf voltage is proportional to the ve-
locity, a sloped acceleration command can be designed
to overcome the effect of the back-emf voltage as
shown in Fig. 4. The slope needs to be chosen such
that the maximum allowable applied voltage is met for
as long as possible but not saturated.
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Fig. 4. Sloped fast control profiles with both accelera-
tion and velocity constraints.

3. VIBRATION SUPPRESSION CONTROL
PROFILE GENERATION WITH BOTH VOLTAGE

AND VELOCITY CONSTRAINTS FOR A
FLEXIBLE SYSTEM

In this section, a vibration suppression control profile
generation with both applied voltage and velocity con-
straints for a flexible system is induced by using the
vibration suppression shape filter technique (Zhou and
Misawa, 2005a).

3.1 Calculating the Number of the Sloped Positive
Acceleration Command Samples to Reach the Velocity
Constraint

In this section, the number of the sloped positive ac-
celeration command samples is calculated. The con-
straint of the acceleration u[k] is assumed to be
|u[k]| ≤ Amax. The maximum velocity is assumed
to be Vmax and the sampling period is assumed to
be Ts. The relationship between the acceleration com-
mand u[k] and the velocity v[k] is given as V (z)

U(z) =

Ka
z−1

1−z−1 , where Ka is a constant gain. The difference
equation between acceleration u[k] at the discrete-
time instant kTs and velocity v[k] at the discrete-time
instant kTs is given as v[k] = Kau[k − 1] + v[k −
1]. If the initial velocity v[0] is assumed to be zero,
the velocity at the discrete-time instant kTs can be
computed as v[k] = Ka

∑k−1
i=0 u[i].

The sloped positive acceleration command u[k] is
described as u[k] = Amax −k ·S, k = 0, · · · ,m−1,
where S is the acceleration decrease per sample. As a
result the following equation holds,

Vmax = Ka

m−1∑

i=0

u[i] = Kam

m−1∑

i=0

(Amax − i · S),

= Ka(Amax + S/2)m − KaSm2/2.

Hence, m is the least positive solution of a second-
order polynomial equation KaSm2/2 − Ka(Amax +
S/2)m+Vmax = 0. The number of the sloped positive
acceleration command samples can be calculated as

m1 = floor (m) (1)



and the maximum velocity Vrmax from (1) is

Vrmax = Ka(Amax +S/2)m1−KaSm2
1/2 ≤ Vmax.

(2)

3.2 Calculating the Number of the Zero Acceleration
Command Samples

When the rigid body reaches the maximum velocity
constraint described in (2), the rigid body is cruising
at the constant velocity Vrmax as shown in Fig. 4. If
the position movement is assumed to be Pmax, the
number of the zero acceleration command samples is
calculated. The state-space model of the rigid body

is described as
[
p[k + 1]
v[k + 1]

]

= G

[
p[k]
v[k]

]

+ KbHu[k],

where G =

[
1 Ts

0 1

]

, H =

[
T 2

s /2
Ts

]

, p[k] is the position

at the discrete-time instant kTs, v[k] is the velocity
at the discrete-time instant kTs, and Kb is a constant
gain. The acceleration command u has the following
format

u =[Amax, Amax − S, · · · , Amax − (m1 − 1)S
︸ ︷︷ ︸

m1

,

0, 0, · · · , 0
︸ ︷︷ ︸

n

,

−Amax,−(Amax − S) · · · ,−(Amax − (m1 − 1)S)
︸ ︷︷ ︸

m1

].

If the initial position p[0] and velocity v[0] are as-
sumed to be zero, the position and velocity at the
discrete-time instant kTs can be computed as (Ogata,
1995)

[
p[k]
v[k]

]

= Gk

[
p[0]
v[0]

]

+

k−1∑

i=0

GiKbHu[k − i − 1],

=

k−1∑

i=0

GiKbHu[k − i − 1].

So at the discrete-time instant (2m1 + n)Ts,
[
p[2m1 + n]
v[2m1 + n]

]

=

2m1+n−1∑

i=0

GiKbHu[2m1 + n − i − 1],

=





Kbm1T
2
s

2
(2Amax + S − Sm1)(m1 + n)

0



 .

If the position at the discrete-time instant (2m1+n)Ts

is imposed to be Pmax, i.e. Kbm1T 2

s

2 (2Amax + S −
Sm1)(m1 + n) = Pmax, then

n =
2Pmax

Kbm1T 2
s (2Amax + S − Sm1)

− m1. (3)

Generally the above n is not an integer. Let n =
floor(n) +α, where α = n− floor(n) and 0 ≤ α <
1. The number of zero acceleration command samples
can be chosen to be

n1 = floor(n) + 1. (4)

In the above implementation, since the resultant num-
ber of zero acceleration command n1 is generally
greater than the required fractional number of samples
n, the resultant position at the end of the acceleration
command is greater than the required position con-
straint which is Pmax. Fig. 5 shows the calculated
fractional number of the maximum velocity profile.
The time interval between the final maximum velocity
impulse Vrmax and the next velocity impulse b0 is
αTs which is less than one sampling period Ts. Fig. 6
shows the modification of the integer number of the
maximum velocity profile from (4). Compared with
Fig. 5, the summation of velocity impulses in Fig. 6 is
increased by (1−α)Vrmax per sample. The additional
velocity impulse summation can be compensated for
by slightly modifying the velocity impulses. The ac-
celeration command corresponding the velocity pro-
file in Fig. 6 is

u =[Amax, Amax − S, · · · , Amax − (m1 − 1)S
︸ ︷︷ ︸

m1

,

0, 0, · · · , 0
︸ ︷︷ ︸

n1

,

−Amax,−(Amax − S) · · · ,−(Amax − (m1 − 1)S)
︸ ︷︷ ︸

m1

].

(5)

The velocity profile from (5) can be described as

v[0] = 0,

v[k] = Ka

k−1∑

i=0

u[i], k = 1, · · · , 2m1 + n1 − 1,

v[2m1 + n1] = 0.

The above velocity profile can be modified to

v1[0] = 0,

v1[k] = v[k] −
(1 − α)Vrmax

2m1 + n1 − 1
,

k = 1, · · · , 2m1 + n1 − 1,

v1[2m1 + n1] = 0.

The integral of the modified velocity impulses is ex-
actly the same as the required integral of the velocity
impulses in Fig. 5. The resultant modified acceleration
command corresponding to (5) is

u1[0] = Amax −
(1 − α)Vrmax

Ka(2m1 + n1 − 1)
,

u1[k] = u[k], k = 1, · · · , 2m1 + n1 − 1,

u1[2m1 + n1 − 1] = −[Amax −
(1 − α)Vrmax

Ka(2m1 + n1 − 1)
].

(6)

In (4), if the resultant integer number n1 of the zero
acceleration command is less than 0, then the acceler-
ation and the velocity limits are not required to achieve
the position constraint. In this situation, to guarantee
the position constraint, either a reduced acceleration
limit or a reduced velocity limit may be implemented.
It is easy to understand that the resultant maximum
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Fig. 5. The calculated fractional number of the maxi-
mum velocity profile.
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Fig. 6. The modification of the integer number of the
maximum velocity profile.
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Fig. 7. Generation of a vibration suppression com-
mand.

velocity from the modified acceleration command (6)
is slightly less than Vrmax in (2).

3.3 Vibration Suppression Profile Generation with
Both Acceleration and Velocity Constraints

Since the sloped fast acceleration command is gener-
ated in the previous section, a vibration suppression
command can be generated as shown in Fig. 7. The
vibration suppression command is the convolution of
the sloped fast command and the vibration suppres-
sion shape filter. The vibration suppression shape fil-
ter in Fig. 7 is simply described in (Zhou and Mis-
awa, 2005a). In (Zhou and Misawa, 2005a), it shows
that the Input Shaping R© 2 (Singer and Seering, 1990)
is a special case of a non-continuous impulse func-
tion based vibration suppression shape filter. Different
from the Input Shaping R©, the vibration suppression
shape filter in (Zhou and Misawa, 2005a) is generated
from a continuous function, so it is able to suppress the
high frequency resonance modes besides canceling the
low frequence resonance modes. However, the Input
Shaping R© are not able to suppress the unmodeled
high frequency vibrations if they are designed based
on a low frequency resonance mode (Zhou and Mis-
awa, 2005a).

4. SIMULATION RESULTS FOR HARD DISK
DRIVE LONG SEEK CONTROL

Consider the following flexible system which is em-
bedded in a hard disk assembly, H(s) = Kc · Kv ·

2 Input Shaping R© is a registered trademark of Convolve, Inc. in
the United States.
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Fig. 8. Bode magnitude of the resonance structure.
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Fig. 9. Sloped fast current command with the velocity
constraint.

Kp · R(s) 1
s2 , where the input is the current signal in

amps and the output is the position signal in tracks.
The variable Kc = 1.3 tracks/sample2

amp is a constant gain

from current to acceleration, Kv = 5 × 104 samples
sec

is the velocity gain, Kp = 5 × 104 samples
sec is the

position gain, and R(s) is a resonance structure. The
Bode magnitude plot of a reduced order (28th) R(s) is
shown in Fig. 8. This resonance transfer function R(s)
was derived from the flexible arm of an open disk drive
at the Oklahoma State University Advanced Controls
Laboratory. The resonance modes change drastically
due to variation of the mode parameters. On the Bode
plot, the peaks of the frequency response may shift
both in frequency and in amplitude.

The maximum velocity constraint is Vmax = 130
tracks/sample, the applied voltage constraint is Va =
12 volts, the long seek position movement is Pmax =
3 × 104 tracks, the sampling period is Ts = 2 ×
10−5 seconds, the maximum current is chosen to be
Aamx = 1.3 amp, and the slope value is chosen to be
S = 0.0025 tracks/sample2

sample . Fig. 9 shows the sloped fast
current command with the velocity constraint. Fig. 10
shows the resultant velocity signal. Fig. 11 shows the
resultant position signal. Fig. 12 shows the position
signal near the target track. The interval of Y axis in
Fig. 12 is scaled to exactly 10 tracks and it shows that
the residual vibration exists for a long period of time
after the end of the current command (6.3 msec).

To suppress the residual vibration, a rectangle based
shaper filter (Zhou and Misawa, 2005a) is designed
based on the first resonance mode in the flexible
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Fig. 10. The velocity signal with the sloped fast cur-
rent.
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Fig. 11. The position signal with the sloped fast cur-
rent command.
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Fig. 12. The position signal near the target track.

system. The first resonance mode has the parameter
ω1 = 6.12 × 103 rad/sec and ζ1 = 0.7. Fig. 13 shows
the resultant vibration suppression shape filter. Fig. 14
shows the vibration suppression current command.
Fig. 15 shows the resultant velocity signal. Fig. 16
shows the resultant position signal near the target
track. The interval of Y axis in Fig. 16 is scaled
to exactly 10 tracks. Although the residual vibration
due to the first resonance mode has been canceled, a
large vibration still exists after the end of the current
command. This residual vibration is caused by the
second resonance mode in the flexible system.

To suppress the residual vibration of the second res-
onance mode, a rectangle based shaper filter (Zhou
and Misawa, 2005a) is designed based on the second
resonance mode in the flexible system. This mode has
the parameter ω1 = 1.02 × 104 rad/sec and ζ1 =
0.08. Fig. 17 shows the resultant vibration suppres-
sion shape filter based on the second resonance mode.
Combining the shape filter in Fig. 13 and the shape
filter in Fig. 17 results in a new shape filter as shown in
Fig. 18. The resultant new vibration suppression shape
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Fig. 13. Rectangle based shape filter based on reso-
nance parameter ω1 = 6.12 × 103 rad/sec and
ζ1 = 0.7.
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Fig. 14. Vibration suppression current command.
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Fig. 15. Velocity signal with the vibration suppression
current command.
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Fig. 16. Position signal near the target track.

filter in Fig. 18 cancels the residual vibration due to
both the first and the second resonance modes. Fig. 19
shows the vibration suppression current command.
Fig. 20 shows the resultant velocity signal. Fig. 21
shows the resultant position signal near the target
track. The interval of Y axis in Fig. 21 is scaled to
exactly 1 track. It is obvious that the residual vibration
due to both the first and the second resonance modes is
canceled and the residual vibration due to all the high
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Fig. 17. Rectangle based shape filter based on reso-
nance parameter ω2 = 1.02 × 104 rad/sec and
ζ1 = 0.08.
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Fig. 18. Vibration suppression shape filter to cancel
both the first resonance mode and the second
resonance mode.
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Fig. 19. Vibration suppression current command.

frequency modes is also suppressed. Fig. 22 shows the
drive applied voltage signal due to the drive current
command and it shows that the maximum allowable
applied voltage is met but not saturated. The future
work will include how to automatically select the
slope parameter S and drive current limit Amax given
the velocity, position and applied voltage constraints.

5. CONCLUSIONS

In this examination, a vibration suppression control
profile is generated with both the drive voltage and
velocity constraints. The simulation results of the hard
disk drive long seek control show the effectiveness
of this method. The proposed methods apply to other
flexible dynamic system long seek control problem.
The methods in this paper are patented (pending).
Commercial use of these methods requires written
permission from the Oklahoma State University.
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Fig. 20. Velocity signal with the vibration suppression
current.
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Fig. 21. Position signal near the target track.
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Fig. 22. Applied drive voltage signal due to the drive
current command.
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