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Abstract: We address the problem of tracking references generated by an exosystem
when the plant is described by a Takagi-Sugeno (TS) fuzzy model. We propose the
inclusion of a discontinuous term into the control law to improve the performance
of the controller, and in those terms, we give a numerical algorithm based on the
use of computer-aided design (CAD) tools, in order to reduce systematically the
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1. INTRODUCTION

As we all know, the tracking of reference signals,
at least asymptotically, is a very important matter
in system theory. In literature, we can find diverse
approaches to perform this task. However, regu-
lation theory provides a complete set of tools to
accomplish this goal.

The regulator problem for a system affected by
perturbation and reference signals, consists in
finding a state or error feedback controller such
that the equilibrium point of the closed-loop sys-
tem with no external signals is asymptotically sta-
ble, and the tracking error goes to zero when the
system is under the influence of the exosystem. In
(Francis, 1977), the design of the linear regulator
was given in terms of certain matrix equations
(Francis equation), whose solution depends on the
property of the exosystem signals to be observ-
able for the system output. Isidori and Byrnes
have shown that the nonlinear problem is solvable
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by means of some partial differential equations,
named henceforth, Francis-Isidori-Byrnes (FIB)
equations (Isidori and Byrnes, 1990). However this
approach becomes impractical when is applied to
complex nonlinear plants.

On the other hand, very often, we are unable
to get a rigorous mathematical model. For this
situation, Takagi and Sugeno proposed a fuzzy
model which describes the dynamics of complex
systems under the suitable selection of linear sub-
systems. These models allow us to extend linear
results to the nonlinear field in a relatively easy
way. For instance, the stability for the TS fuzzy
models depends on the existence of a common
definite positive matrix (Wang, 1997; Tanaka and
Wang, 2001). This condition is relaxed in other
papers, which propose searching for piece-wise
quadratic Lyapunov functions (see e.g. (Johanson
and Rantzer, 1997)).

A few years ago in (Xiao-Jun and Zeng-Qi, 2000)
was presented an approach to design the fuzzy
regulator based on local controllers exclusively.
Nevertheless, as is mentioned in (Lee et al., 2003)



and (Castillo-Toledo et al., 2003), this technique
only works in very particular cases.

In this work, we develop an algorithm to system-
atically reduce the tracking error. Our procedure
is based on the addition of a discontinuous term
to the overall fuzzy controller, LMI techniques and
CAD tools.

The paper is organized as follows. In section 2 we
review the basic results on output regulation. In
section 3 the main result and the algorithm are
presented while in section 4 a numerical simula-
tion is carried out. The final comments are given
in section 5.

2. BASIC RESULTS ON REGULATION
THEORY

Considering the dynamical system

ẋ = f(x, u, w) (1)

ẇ = s(w) (2)

e = h(x, w); (3)

with x ∈ Rn, w ∈ Rp, u ∈ Rm, and e ∈ Rq as
the state of the system, the state of exosystem,
the input signal and the output tracking error,
respectively; the State Feedback Output Regula-
tion Problem (SORP) is defined as the problem
of maintaining the closed-loop stability when the
plant is not affected by the exosystem, and en-
suring the reference tracking when the system is
under the influence of the exosystem. More pre-
cisely, the SORP, consists in finding a controller

u(t) = α(x,w) (4)

such that, the following conditions hold:

S) (Stability) The equilibrium point x = 0 of the
system

ẋ = f(x, α(x, 0), 0)

is asymptotically stable.
R) (Regulation) The closed-loop system (1), (2)

and (4) satisfies

lim
t→∞

e(t) = 0

On the other hand, the linear approximation for
the system (1)-(3) around the equilibrium point
(x,w, u) = (0, 0, 0) is

ẋ = Ax + Bu + Pw (5)

ẇ = Sw (6)

e = Cx + Qw (7)

Thus, if the pair (A,B) is stabilizable, the so-
lution for the SORP depends on the existence
of nonlinear mappings xss = π(w) and uss =

γ(w) satisfying the FIB equations (Byrnes et
al., 1997; Isidori, 1995)

∂π(w)
∂w

s(w) = f(π(w), α(π(w), w), w) (8)

0 = h(π(w), w). (9)

Roughly speaking, xss = π(w) and uss = γ(w)
represent the steady state zero output submani-
fold and the steady state input which ensures the
invariance of π(w), respectively.

The resulting controller is

u = Kx + γ(w)−Kπ(w).

with K such that (A + BK) is Hurwitz.

For the linear case, equations (8)–(9) become
(Isidori, 1995; Knobloch et al., 1993)

ΠS =
0 =

AΠ + BΓ + P
CΠ + Q

(10)

and the controller is u = Kx + (Γ−KΠ)w.

3. THE NUMERICAL ALGORITHM

In this section, we propose to include a discon-
tinuous term into the TS fuzzy controller. This
additional element, is the basis of our approach
and it is demonstrated that under certain condi-
tions, a controller designed in this way reduces the
steady state error obtained by the method of local
regulators.

Let us consider the TS fuzzy model described by
r rules of the form

Plant rule i :

IF z1(t) is M1i and . . . and zv(t) is Mvi

THEN
∑

i

:





ẋ = Aix + Biu + Piw
ẇ = Siw
ei = Cix + Qiw, i = 1, ..., r

where Mji are the fuzzy sets, z1, ..., zv are the cor-
responding premise variables which may coincide
with x or w, or even with a combination of these
state vectors. The linear subsystems are not neces-
sary obtained from linear approximation, instead
they can be extracted from some knowledge of the
process dynamics (Tanaka and Wang, 2001).

To simplify this analysis, we avoid the use of
observers, i. e., we consider that the measurable
variables include the whole information of both,
the plant and the exosystem.

Thus, the overall TS fuzzy system is (Tanaka and
Sugeno, 1992; Tanaka and Wang, 2001; Wang,
1997):



ẋ =
r∑

i=1

µiAix +
r∑

i=1

µiBiu +
r∑

i=1

µiPiw, (11)

ẇ =
r∑

i=1

µiSiw, (12)

e =
r∑

i=1

µi [Cix + Qiw] , (13)

with µi as the normalized weight for each rule
calculated from the membership functions of zj

in Mji satisfying

µi ≥ 0
r∑

i=1

µi = 1, z = [z1, ..., zv]T .

Notice the TS fuzzy model is the result of single-
ton fuzzifier, product inference and center average
defuzzifier.

To construct the fuzzy controller we could design
local regulators by solving the following equations
(Xiao-Jun and Zeng-Qi, 2000)

ΠiSi =
0 =

AiΠi + BiΓi + Pi

CiΠi + Qi
(14)

for all i = 1, . . . , r. Then, local controllers take the
form

u = Kix + Liw,

with

Li = Γi −Ki




r∑

j=1

µjΠj


 ,

and the overall nonlinear fuzzy controller would
be

u =

(
r∑

i=1

µiKi

)
x +

(
r∑

i=1

µiLi

)
w. (15)

Unfortunately, this regulator does not guarantee
the asymptotical convergence of the error, in gen-
eral (Lee et al., 2003; Castillo-Toledo et al., 2003).
In fact, the latter analysis assumes

π̂(w) =

(
r∑

i=1

µiΠi

)
w,

γ̂(w) =

(
r∑

i=1

µiΓi

)
w.

Nevertheless, in general, mappings π̂(w), γ̂(w) are
not the exact solution of the FIB equations (8)–
(9).

For the interested reader, the particular cases that
are solved by means of π̂(w), γ̂(w) are analyzed in
(Castillo-Toledo et al., 2003).

In the following, we propose to compensate the
difference between π̂(w), γ̂(w) and the exact map-
pings by means of a sliding mode term. Our mo-
tivation is that we may consider the existence of
a nominal model for which the aggregate control
(15) is exactly the equivalent control (Utkin et
al., 1999). In this sense, we take the TS fuzzy
system as the disturbed version of such nominal
model. The suggested switching function for this
problem is

e(t) =
r∑

i=1

µiCix(t) +
r∑

i=1

µiQiw(t).

The rules for the fuzzy regulator have the form

Controller rule i :
IF z1(t) is M1i and ..... and zp(t) is Mpi

THEN
u(t) = Ki(x(t)−Πiw(t)) + Γiw(t),

and the final controller will be

u = ueq + v(e) (16)

where

ueq =

(
r∑

i=1

µiKi

)
x

+




r∑

i=1

µiΓi −
r∑

i=1

µiKi

r∑

j=1

µjΠj


w

is the controller proposed in (Xiao-Jun and Zeng-
Qi, 2000), and

v(e) = Gsign(e)

is the additional discontinuous term.

Thus, the Fuzzy Output Regulator Problem with
Sliding Modes (FORPSM) can be defined as the
problem of finding a set of triplets (Ki, Πi, Γi)
for i = 1, .., r and G such that the following
conditions hold:

FS) (Fuzzy Stability) The equilibrium point (x,w) =
(0, 0) of the system

ẋ =
r∑

i=1

µiAix(t) +
r∑

i=1

r∑

j=1

µiµjBiKjx(t)

+ Gsign(e)

is asymptotically stable.
FR) (Fuzzy Regulation) The solution of the

closed-loop system (11)–(12)–(16) satisfies

lim
t→∞

e(t) = 0.

The following result states the conditions for the
existence of such a controller.

Theorem 1. If matrices Si are neutrally stable for
all i = 1, . . . , r and



H1) the pairs (Ai, Bi) are stabilizable for all i =
1, . . . , r,

H2) there exist matrices Πi and Γi solving

ΠiSi = AiΠi + BiΓi + Pi (17)

0 = CiΠi + Qi (18)

for all i = 1, . . . , r,
H3) there exists matrices Ki and P such that

NT
ii P + PNii < 0

for i = 1, ..., r and
(

Nij + Nji

2

)T

P + P
(

Nij + Nji

2

)
< 0

for all i, j = 1, . . . , r satisfying µiµj 6= 0 with

Nij = (Ai + BiKj) , (19)

H4) there exist four real numbers α1 > 0, α2 > 0,
α3 > 0 and G such that −α1 < G < 0 and
G < −α2

then the FORPSM is solvable. Moreover, the
controller has the form

u =

(
r∑

i=1

µiKi

)
x (20)

+




r∑

i=1

µiΓi −
r∑

i,j=1

µiµjKiΠj


w + v(e),

with v(e) defined as above.

Proof. Due to the lack of space the proof is
omitted, however it is given in (Meda-Campańa
and Castillo-Toledo, 2005).

From the latter theorem, it can be deduced that
the regulation problem is solved when there exist
α1 > 0 and α2 > 0 such that

−α1 < G < 0 (21)

and
G < −α2 (22)

are satisfied, where

α1 ≡

√√√√
(
‖Q‖ − ‖P‖2 (

∑r
i=1 ‖Bi‖)2

)
‖x‖2

q
. (23)

with

Q =




r∑

i,j=1

µiµjN
T
ijP + P

r∑

i,j=1

µiµjNij


 ,

q as the dimension of the error, and α2 depend-
ing on π(w) and γ(w) which solve the following
equations (Isidori, 1995)

∂π

∂w
s(w) =

r∑

i=1

µiAiπ(w)+
r∑

i=1

µiBiγ(w)+
r∑

i=1

µiPiw

and

0 =
r∑

i=1

µiCiπ(w) + Qw.

Now, we present an algorithm based on LMI
techniques, which provides a practical way to
compute matrices Ki and P in order to expand
the stability region, such that the inclusion of the
sliding mode term does not affect the stability
property. For more details about LMIs, the reader
is referred to (Boyd et al., 1994), where a complete
analysis of LMIs in control theory is presented.

We observe that assumption FH1) is satisfied and
at the same time the existence of α1 > 0 ∈ R is
guaranteed when the following LMIs are feasible

−βI > Q1A
T
i +XT

i BT
i +AiQ1 +BiXi +λI (24)

for i = 1 . . . r, where Q1 and Xi are the unknowns
with Xi = KiQ1 and Q1 > 0. The real number
β > 0 is a design parameter that may be changed
during the design process in order to obtain differ-
ent values for α1. These LMIs ensure the stability
for each subsystem, for the interpolation regions,
i. e. FH3), we have to solve

−2βI >Q1A
T
i + XT

j BT
i +Q1A

T
j + XT

i BT
j (25)

+ AiQ1 + BiXj + AjQ1 + BjXi + 2λ2I

for i = 1 . . . r − 1 and i < j ≤ r. As before, the
existence of α1 > 0 ∈ R is guaranteed, Q1 and Xi

are the unknowns with Xi = KiQ1 and Q1 > 0,
and the common matrix P is Q−1

1 (Tanaka and
Wang, 2001).

From (23), (24) and (25), we notice α1 can be

approximated by
√

β
q . On the other hand, we

know that checking (22) is too complex because
it involves the exact mappings π(w) and γ(w).
Therefore, considering the great impact of com-
puters into the control design field, we suggest
the use of simulation tools in order to avoid the
testing of (22). The controller design algorithm is
as follows:

Step 1: Set the initial value β = 0 and any ∆β
as increment.

Step 2: Solve LMIs (24) and (25). Construct the

controller (20) by taking G = −
√

β
q .

Step 3: Evaluate the performance of the con-
troller using any simulation tool. If the result is
satisfactory then finish; otherwise, set β = β +
∆β and return to Step 2.

4. AN ILLUSTRATIVE EXAMPLE

Let us consider the fuzzy system (11)-(12)-(13)
presented in (Xiao-Jun and Zeng-Qi, 2000) with



A1 =
(

0 1
a 0

)
; A2 =

(
0 1
2
π

a 0

)
, B1 =

(
0
b

)
,

B2 =
(

0
αb

)
, C =

(
0 1

)
,

S1 = S2 =
(

0 1
−1 0

)
, Q =

(
1 0

)
,

where a = − Mgl
Ml2+I , b = 1

Ml2+I , g = 9.81 m/s2,
M = 20 Kg, l = 0.5 m, I = 0.8 Kg ·m2, α = 2.5,
membership functions

µ1 [x1(t)] =
[
1− 1

1 + e−7(x1−π/4)

]

×
[

1
1 + e−7(x1+π/4)

]
,

µ2 [x1(t)] = 1− µ1 [x1(t)] ,

and, as can be seen, in this case q = 1.

The solutions for the linear subsystems are Π1 =

Π2 =
(

0 −1
1 0

)
, Γ1 =

(
0

1 + a

b

)
, Γ2 =

(
0

1 + 2a/π

αb

)
thus, the overall fuzzy mappings

are

π̂(w) =
(

0 −1
1 0

) (
w1

w2

)
, (26)

γ̂(w) =
(
0 δ

)
, (27)

with

δ = µ1(w2)
1 + a

b
+ µ2(w2)

1 + 2a/π

αb

(
w1

w2

)
.

We can notice, π̂(w) and γ̂(w) do not solve the
fuzzy regulation problem since they do not coin-
cide with the exact solution

π(w) =
(

0 −1
1 0

)(
w1

w2

)
,

γ(w) =
(

0
1 + aµ1(w2) + 2aµ2(w2)/π

µ1b + µ2αb

)(
w1

w2

)
,

which are clearly different from (26)–(27) when
α 6= 1. Therefore, we will try to compensate this
difference by means of discontinuous control.

For this example we simply set β = 0 and ∆β = 2.
Using the LMI toolbox of MATLABr we obtain
the following controllers.

Start:

Controller 1 with β = 0:

K1 =
(−53.5904 −20.9328

)

K2 =
(−36.4632 −8.8450

)

G = 0

Controller 2 with β = 2:
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G=−2 

Fig. 1. Tracking error using different controllers.
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Fig. 2. Output vs reference with G = −2

K1 =
(−271.1921 −69.5392

)

K2 =
(−127.2090 −29.0904

)

G =−
√

2

Controller 3 with β = 4:

K1 =
(−787.8985 −184.5593

)

K2 =
(−342.1423 −76.9143

)

G =−2

We use SIMULINKr to simulate the behavior of
the plant under the action of the three controllers.
The results are given in Figures 1, 2 and 3. Figure
1 compares the errors for the three regulators. As
we can see, the controllers are improved as the
algorithm progresses. Figure 2 shows the output of
the plant and the reference signal when we apply
controller 3, and Figure 3 presents the input signal
at same conditions.

Remark 2. Observe that the input signal remains
mainly smooth. A controller designed in this way
demands less effort than those designed using
discontinuous techniques exclusively.
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Fig. 3. Input signal

5. CONCLUSIONS

In this paper we have presented a practical ap-
proach to construct output regulators for nonlin-
ear systems. In our method, we combine regula-
tion theory, Takagi-Sugeno fuzzy models, sliding
modes control and LMIs techniques. Based on
the existence of local regulators, we developed a
numerical algorithm to reduce systematically, or
even to eliminate the overall tracking error by
means of a discontinuous term. The simulations
carried out suggest its validity.

This approach can be applied to the original
nonlinear system. In that case the result will
depend on the grade of approximation of the TS
fuzzy model.

REFERENCES

Boyd, S., L. El Ghaoui, E. Feron and V. Balakrish-
nan (1994). Linear Matrix Inequalities in Sys-
tems and Control Theory. SIAM. Philadel-
phia, PA.

Byrnes, C. I., F. Delli Priscoli and A. Isidori
(1997). Output Regulation of Uncertain Non-
linear Systems. Birkhäuser, Boston.
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