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1. INTRODUCTION

This paper considers the robust stability of an un-
certain system from the viewpoint of the behavioral
approach. The robust stability analysis is one of the
most important problems in the control theory because
there always exists a model uncertainty between the
actual system and its mathematical model (e.g. Zhou,
Doyle and Glover 1996).

The notion of passivity plays an important role in
stability analysis of a feedback system in the tradi-
tional input-output framework (e.g. Vidyasagar 1993,
van der Schaft 1996). That is, a feedback system is
stable if it consists of a passive sub-system and a
strictly passive sub-system. This result is well-known
as the passivity theorem. Several attempts to gener-
alize the passivity-based stability analysis have been
made from various viewpoints (e.g. Iwasaki and Shi-
bata 1999, Megretski and Rantzer 1997). It may be
noted that, in the behavioral approach, the passivity
or dissipativity of a linear system is characterized in
terms of a quadratic difference form (QDF), and the
analysis and synthesis of a passive (or dissipative)
system has been extensively studied (Willems and
Trentelman 1998, 2002, Belur and Trentelman 2004).

Also, the modeling of an uncertain system via QDF’s
was considered by Petersen and Willems (2002).

An important generalization of the passivity-based ro-
bustness analysis is to derive a stability condition for
an interconnection of a linear nominal system and
a class of passive uncertainty by removing the con-
ventional input-output assumption. The interconnec-
tion was devised to describe a more general control
structure than a feedback loop in the behavioral set-
ting (Willems 1997). Along this line, Takaba (2002)
derived an LMI condition for stability of an intercon-
nection of linear systems with the first-order represen-
tation. Pendharkar and Pillai (2004) also considered
the stability analysis of an interconnection of a linear
system and a class of nonlinearities.

The purpose of this paper is to derive a robust stabil-
ity condition for an interconnection of a linear time-
invariant nominal system and a class of linear passive
uncertainties. In particular, we wish to find a neces-
sary and sufficient condition for the robust stability
under the constraint of regular interconnection. We
will study the robust stability condition both for full
and partial interconnections.



The organization of this paper is as follows. First, we
review the basic facts on the linear differential system,
the quadratic differential form and passivity, and the
interconnection in Section 2. In Section 3, we consider
the robust stability of a full interconnection, and derive
a necessary and sufficient condition for the robust
stability under the regular full interconnection. The
results in Section 3 are extend to a more general case
where some of manifest variables do not contribute
to interconnection in Section 4. Finally, in Section 5,
we give some concluding remarks and discuss the
robust stabilization problem. It should be noted that
the proofs of several lemmas and propositions are
omitted for the limited paper length.

Notations:
�, � : the fields of real numbers and complex numbers
� � :� �λ � � � Reλ � 0�
� p : the set of p-dimensional complex vectors
� p�q: the set of p�q complex matrices
�

q�q
s : the set of q�q Hermitian matrices

� �ξ �: the set of polynomials with complex coefficients
� p �ξ �: the set of p-dimensional polynomial vectors
� p�q�ξ �: the set of p�q polynomial matrices
� p�q�ζ �η �: the set of p� q two-variable polynomial
matrices in the indeterminates ζ and η
�

q�q
s �ζ �η �: the set of q� q Hermitian two-variable

polynomial matrices. A polynomial matrix Φ� � q�q�ζ �η �
is called Hermitian if Φ�η̄ � ζ̄ �� � Φ�ζ �η�.
�∞��� � p �: the set of infinitely often differentiable
functions from � to � p .

2. PRELIMINARIES

We will briefly review some preliminary results of
the behavioral system theory (Willems 1991, Willems
1997, Willems and Trentelman 1998) which will be
useful in this paper.

2.1 linear time-invariant differential system

In the behavioral approach, a dynamical system is
characterized by its behavior. The behavior is the
set of all possible trajectories which meet the dy-
namic laws of the system. Throughout this paper, we
will identify a dynamical system with its behavior
for ease of notation. We are mainly interested in a
linear time-invariant differential system described by
a differential-algebraic equation with constant coeffi-
cients

R0w�R1
d
dt

w� � � ��RL
dL

dtL w � 0�

or equivalently

R

�
d
dt

�
w � 0�

where R�ξ � � R0 �R1ξ � � � ��RLξ L � � p�q�ξ �. This
representation is called a kernel representation. The

variable w : � 	 � q is called a manifest variable.
Then, the behavior is defined by

��

�
w � �∞��� � q �

���� R

�
d
dt

�
w � 0

�
�

In short, we denote this behavior as � � kerR� d
dt �.

We define �q as the set of such linear time-invariant
differential behaviors with q variables. Note that we
can define the behavior in the class of �∞-functions
without loss of generality, because we are interested in
the robust stability of interconnections of linear time-
invariant systems.

Recall that there are more than one polynomial ma-
trices which induce kernel representations of �. A
polynomial matrix R�ξ � satisfying � � kerR�d�dt�
is said to be minimal if the number of rows of R�ξ �
is less than or equal to that of any other polynomial
matrix which induces a kernel representation of�.

A system� is called controllable if, for any w1� w2 �
�, there exist a w �� and a positive constant T such
that w�t��w1�t� �t 
 0� and w�t� �w2�t�T � �t �T �.
The family of controllable linear time-invariant dif-
ferential systems is denoted by �q

cont. When a kernel
representation of � is induce by R�ξ �, � is control-
lable iff rank�R�λ �� is constant for all λ � � . If R�ξ �
induces a minimal kernel representation of a control-
lable system, then R�λ � has full row rank for all λ � � .

If R�λ � has full row rank for all λ � � , there ex-
ists a polynomial matrix M � � q�m�ξ � such that
R�ξ �M�ξ � � 0. In this case,� can be rewritten as

��

�
w � �∞��� � q �

���� �� s.t. w � M

�
d
dt

�
�

�
�

or in short�� imM� d
dt �, where � :�	 �

m is an aux-
iliary variable called a latent variable. The represen-
tation w � M� d

dt �� is called an image representation.
The image representation is said to be observable if
M� d

dt ��� 0 implies �� 0. The behavior�� imM� d
dt �

is observable if and only if M�λ � has full column rank
for any λ � � .

Suppose that R � � p�q�ξ � induces a minimal kernel
representation of�� �q. Then, there exists a nonsin-
gular permutation matrix Π such that

R�ξ �Π�1 �
�
Q�ξ � �P�ξ �

�
� detP 
� 0�

Πw �

�
u
y

�
� u : �	 �

m � y : � 	 �
p � p�m � q�

Then, u and y serve as the input and output of �,
respectively, and the transfer function from u to y is
defined by

G�ξ � � P�ξ ��1Q�ξ �
For the obvious reason, the above partition is called
the input/output (I/O) partition of �. It should be
noted that the choice of inputs and ouputs is not
unique, and is not given a priori. The dimensions of
u and y (namey, m and p) are invariant for any choice
of inputs and outputs and for any representation of
�. We refer to these dimensions as input and output



cardinalities of �, and denote them by ���� and
����, respectively. It should also be noted that, the
system� � �q is autonomous if and only if ���� � 0
and ���� � q.

A system � is said to be asymptotically stable if
w�t�	 0 �t 	∞� holds for all w��. Clearly,�must
be autonomous in order to be asymptotically stable.
The behavior�� kerR� d

dt � is asymptotically stable if
and only if R�λ � has full column rank for all λ � � � .
In the case where R�ξ � is square,� is asymptotically
stable iff R�ξ � is Hurwitz, namely detR�ξ � � 0 has all
roots in Reξ � 0.

2.2 Quadratic differential form and passivity

A quadratic differential form (QDF) QΦ�w� is defined
as a quadratic form of w : �	 �

q and its derivatives.
Namely,

QΦ�w� �
k

∑
i�0

k

∑
j�0

�
diw
dti

��

Φi j

�
d jw
dt j

�

where Φi j � � q�q and Φ�

ji � Φi j. (i � 0�1� � � � �k).
We can associate QΦ with a Hermitian two-variable
polynomial matrix

Φ�ζ �η� �
k

∑
i�0

k

∑
j�1

ζ iη jΦi j � �
q�q
s �ζ �η ��

Notice that the indeterminates ζ and η correspond to
the differentiations on w� and w, respectively. The de-
tailed discussion on the fundamental theory of QDFs
can be found in Willems and Trentelman (1998).

A QDF QΦ�w� is said to be nonnegative if QΦ�w��t��
0 �t � � holds for all w : � 	 � q . Furthermore,
QΦ�w� is called positive if it is nonnegative and
QΦ�w��t� � 0 �t implies w�t� � 0 �t. In the same way,
we can define the nonnegativity and positivity along
the behavior�.

We are now at the position to define the passivity in
the behaviral framework.

Definition 1. The system � is said to be passive with
respect to QΦ or simply Φ-passive if

� 0

�∞
QΦ�w��t�dt � 0 �w ���� (1)

where � denotes the family of infinitely often differ-
entiable functions with compact support.

Moreover,� is said to be strictly passive with respect
to QΦ or simply strictly Φ-passive if there exists a
positive constant ε such that
� 0

�∞
QΦ�w��t�dt � ε

� 0

�∞
�w�t��2dt �w���� (2)

The passivity is closely related to the dissipativity. The
dissipativity of a dynamical system is characterized
in terms of a dissipation inequality and a storage

function. Namely,� is dissipative with respect to QΦ
if there exists a QDF QΨ satisfying

d
dt

QΨ�w��t�
 QΦ�w��t� �t � �� �w ��� (3)

This inequality is called a dissipation inequality, and
QΨ�w� is called a storage function. A Φ-passive sys-
tem is also called Φ-dissipative on�� in the literature.
The next lemma establishes the relation between the
passivity and the dissipation inequality (Willems and
Trentelman 1998, Willems and Trentelman 2002).

Lemma 1. Let���q
cont and Φ� � q�q

s �ζ �η � be given.
The following statements are equivalent.

(i) The behavior� is Φ-passive.
(ii) There exists a nonnegative storage function QΨ

for� and QΦ.
(iii) M�λ ��Φ�λ̄ �λ �M�λ � � 0 holds for any λ � � � ,

where M�ξ � is the polynomial matrix that in-
duces an image representation of�.

The next lemma plays an important role in the analysis
of the case where Φ is a constant matrix.

Lemma 2. Let a nonsingular matrix Φ � �
q�q
s be

given. If the controllable behavior � � �q
cont is Φ-

passive, then we have

σ��Φ�� �����

where σ�� � � and σ�� � � denote the numbers of
positive and negative eigenvalues of an Hermitian
matrix, respectively.

Proof: See Willems and Trentelman (2002).

2.3 Interconnection

We introduce the notion of an interconnection of two
linear time-invariant differential systems��� �.

2.3.1. Full interconnection We first consider the
simplest interconnection where both� and� � belong
to �q and all the manifest variables contribute to the
interconnection. Such an interconnection is defined by
����, and is referred to as a full interconnection.
Obviously, w ����� implies that the manifest vari-
able w must satisfy the laws of both systems.

Let M�ξ � and L�ξ � induce the image representations
of � and ��, respectively. Then, w � ���� is ex-
pressed as

w � M

�
d
dt

�
��

�
M� d

dt � �L� d
dt �
�� �

��

�
� 0�

Also, if R�ξ � and K�ξ � induce the kernel representa-
tions of� and��, the kernel representation of��� �

is given by �
R� d

dt �

K� d
dt �

�
w � 0� (4)



The interconnection���� is said to be regular if

������� � ����������� (5)

or equivalently

������� � �����������q� (6)

The notion of regularity is very important because a
regular interconnection admits a feedback structure
with an appropriate choice of I/O partition under the
above condition (Willems 1997). It should be noted
that, if���� is autonomous and regular, then �����
����� � q and ���������� � q.

Let R�ξ � and K�ξ � induce minimal kernel representa-
tions of� and��, respectively. It is obvious from the
previous discussions that ���� is regular and stable

iff
�

R�ξ �
K�ξ �

�
is square and Hurwitz.

Lemma 3. Consider two controllable systems��� � �
�

q
cont. Let R�ξ � and K�ξ � induce minimal kernel rep-

resentations of � and ��, respectively. Similarly, let
M�ξ � and L�ξ � induce observable image representa-
tions of � and ��, respectively. The following are
equivalent.

(i) ���� is regular and asymptotically stable.

(ii)

�
R�ξ �
K�ξ �

�
is square and Hurwitz.

(iii)
�
M�ξ � �L�ξ �

�
is square and Hurwitz.

(iv) K�ξ �M�ξ � is square and Hurwitz.
(v) R�ξ �L�ξ � is square and Hurwitz.

2.3.2. Partial interconnection We consider a more
general situation where some of the manifest variables
do not contribute to the interconnection. Such an in-
terconnection is called a partial interconnection, and
denoted by����. Suppose that� and�� belong to
�

q�n and �q, respectively. Then, the partial intercon-
nection���� is defined by

���� �
	
�w�x� � �∞��� � q�n� ��w�x� ��� w ���



�

We also define the projection πw : �q�n 	 �q as

πw��� � �w � �∞��� � q � � �x s.t. �w�x� ��� �
Suppose that� and�� are respectively described by

R

�
d
dt

�
w�X

�
d
dt

�
x � 0� (7)

K

�
d
dt

�
w � 0� (8)

where w : �	 � q represents the interconnection vari-
able through which� is connected to�. The variable
x : � 	 � n is said to be detectable from w in �, if
w � 0 implies x�t� 	 0 �t 	 ∞�. Putting the above
equations together yields a kernel representation of
���� is given by�

R� d
dt � X� d

dt �

K� d
dt � 0

��
w
x

�
� 0� (9)

In the same way as the full interconnection case, we
can define the regularity of��� �. That is, the partial
interconnection is said to be regular if

������� � �����������

Also, � ��� is said to be asymptotically stable if
�w�t��x�t�� 	 �0�0� �t 	 ∞� holds for all �w�x� �
����. Clearly, ���� is asymptotically stable iff�

R�λ � X�λ �
K�λ � 0

�
has full column rank for all λ � � � .

The following lemmas explain important relationships
between the full and partial interconnections.

Lemma 4. The partial interconnection��� � is asymp-
totically stable if and only if the following conditions
are satisfied simultaneously.

(i) The variable x is detectable from w in�.
(ii) πw������ is asymptotically stable.

Lemma 5. The partial interconnection ��� � is reg-
ular if and only if the full interconnection π w������

is regular.

It may be noted that similar issues to the above lemmas
are discussed from the viewpoint of regular imple-
mentability by Belur and Trentelman (2002).

3. ROBUST STABILITY ANALYSIS OF FULL
INTERCONNECTION

We first present a fundamental result for the stability
of a full interconnection � �� �. This can be con-
sidered as a generalized version of the well-known
passivity theorem.

Proposition 1. Let Φ�ζ �η� � �
q�q
s �ζ �η � induce a

QDF QΦ. Assume that � � �q
cont is Φ-passive and

�� � �q
cont is strictly ��Φ�-passive. Then, the inter-

connection���� is asymptotically stable.

Proof: We see from Lemma 1 that, under the assump-
tions, there exist nonnegative QDF’s QΨ, QΘ and a
positive constant ε such that

d
dt

QΨ�w��t� 
 QΦ�w��t� �t � �� �w ��� (10)

d
dt

QΘ�w��t�� ε�w�t��2 
�QΦ�w��t� (11)

�t � �� �w ����

By putting these inequalities together, we obtain

QΨ�Θ�w��t�� 0 �w ������ (12)
d
dt

QΨ�Θ�w��t�
�ε�w�t��2 �w ����� (13)

Since QΦ�Θ�w��t� is monotone non-increasing and
bounded below from the above inequalities, Q Ψ�Θ�w��t�
converges as t goes to infinity. This implies that
d
dt QΨ�Θ�w��t� 	 0 and hence w�t� 	 0 from (13).
This completes the proof.



Remark 1. The QDF QΨ�Θ�w� serves as a Lyapunov
function for ����. For the detail of the Lyapunov
theory in the behavioral framework, the readers should
refer to Willems and Trentelman (1998) and Peeters
and Rapisarda (2001).

Consider the interconnection of the nominal system
� � �q

cont and the uncertainty �∆ � ∆Φ, where the
uncertainty set ∆Φ is defined as

∆Φ :�
	
�∆ � �q

cont��∆ : strictly ��Φ�-passive


�

The interconnection � ��∆ is said to be robustly
stable against ∆Φ if it is asymptotically stable for all
�∆ �∆Φ. A sufficient condition for the robust stability
of���∆ immediately follows from Proposition 1.

Theorem 1. Let Φ� � q�q
s �ζ �η � be given. Assume that

� � �q
cont is Φ-passive. Then, the full interconnection

���∆ is robustly stable against ∆Φ.

This theorem gives a sufficient condition for robust
stability of a “general” full interconnection. The theo-
rem guarantees the robust stability even for an irregu-
lar interconnection. For example, consider � � �3

cont
and Φ defined by

�� kerR�
d
dt

�� R�ξ � �
��

3�3 0 �1
0 �ξ 1

�

Φ � diag��1��1�3��

As a member of ∆Φ, we choose

�∆ � kerK�
d
dt

�� K�ξ � �
�

ξ �1 0 �1
0 1 �1

�

By Theorem 1,���∆ is asymptotically stable. How-

ever, it is straightforward to verify that
�

R�λ �
K�λ �

�
has

full column rank for all λ � � , implying ���∆ �
�0�. Clearly, this is an impractical situation because
it means that �∆ forces the trajectory w � � to be
identically zero.

In order to consider the robust stability in more prac-
tical situations, we need to impose the regularity on
���∆. Therefore, we introduce a subset of ∆Φ as

∆p
Φ :� ��∆ � ∆Φ : ���∆� � p� �

where p is the output cardinality of�, i.e. p � ����.
Noting q � ���������, we obtain ��������∆� �
q for �∆ � ∆p

Φ. This is a necessary condition for��
�∆ to be an autonomous regular interconnection.

Furthermore, we make the following assumption.

Assumption 1: Φ is a Hermitian nonsingular matrix in
�

q�q
s , and σ��Φ� 
 ����.

It follows from Lemma 2 that the second condition in
Assumption 1 is a necessary condition for ∆ p

Φ 
� /0.

A necessary and sufficient condition for robust stabil-
ity under the constraint of regular interconnection is
given by the next theorem.

Theorem 2. Let � � �q
cont be given. Under Assump-

tion 1, the interconnection ���∆ is regular and ro-
bustly stable against ∆p

Φ if and only if σ��Φ� � ����
and� is Φ-passive.

We refer to the condition σ��Φ� � ���� as the live-
ness condition.

Proof: (Sufficiency) The robust stability of ���∆
immediately follows from Theorem 1 because ∆ p

Φ �
∆Φ. Since stability implies autonomy, we get ����
�∆� � q. 　 By the definition of ∆p

Φ, it follows that
���∆� � q� p and hence ����� ���∆� � q. Thus,
���∆ is a regular interconnection.

(Necessity) Recall from Lemma 2 that� cannot be Φ-
passive if σ��Φ� � ����. Hence, to prove the neces-
sity, we have only to deduce a contradiction under the
assumption that � is not Φ-passive. Suppose on the
contrary that � is not Φ-passive. Then, there exist a
complex number µ � � � and a nonzero vector v� � m

such that
v�M�λ ��ΦM�λ �v � 0� (14)

By the inertia theorem, there exists a nonsingular
matrix D � � q�q such that

Φ � D�JD� J �

�
Iσ��Φ� 0

0 �Iσ
�

�Φ�

�
� (15)

We partition DM�ξ � as

DM�ξ � �
�

W �ξ �
Z�ξ �

�
�

W � �
σ��Φ��m�ξ �� Z � �

σ
�

�Φ��m�ξ �� (16)

Then, (14) is equivalent to

�W �µ�v�2��Z�µ�v�2 � 0� (17)

This implies that Z�µ�v 
� 0. For simplicity, we choose
v so that �Z�µ�v� � 1. Then, there exists a unitary
matrix V � � p��p�1� such that�

Z�µ�v V
�
�
�
Z�µ�v V

�
� Im� (18)

We form a constant matrix

L � D�1
�

W �µ�v 0
Z�µ�v V

�
� �

q�p�

It follows from (17) and (18) that L has full column
rank, and there exists an ε � 0 satisfying L�ΦL 

�εL�L. This implies that L�∞��� � q � is strictly ��Φ�-
passive, namely L�∞��� � q � � ∆p

Φ. Furthermore, it
is clear that the rank of

�
M�ξ � �L

�
degenerates at

ξ � µ . In fact,

det
�
M�µ� �L

�
� det

�
D�1

�
W �µ� �W �µ�v 0
Z�µ� �Z�µ�v �V

��
� 0�

Therefore, �M�ξ � �L� is not a Hurwitz matrix, and
hence � � �L�∞��� � q �� is unstable by Lemma 3.
Since this contradicts the robust stability against ∆ p

Φ,
the proof of the necessity has been completed.

Remark 2. Since ∆p
Φ � ∆Φ, Theorem 2 asserts that the

Φ-passivity of � is also a necessary condition for the
robust stability against ∆Φ under Assumption 1.



4. ROBUST STABILITY ANALYSIS OF PARTIAL
INTERCONNECTION

We consider the robust stability of a partial intercon-
nection. Let the nominal behavior be given by � �
�

q�n. The uncertainty set ∆Φ and ∆p
Φ are defined in

the same manner as in the previous section, while
p denotes the output cardinality of πw���, i.e. p �
��πw����. The partial interconnection ���∆ ,�∆ �
∆Φ is given by

���∆ � ��w�x���∞��� � q�n�� �w�x���� w��∆��

The partial interconnection ���∆ is said to be ro-
bustly stable against ∆Φ if ���∆ is asymptotically
stable for all�∆ � ∆Φ.

Assumption 2:
(i) x is detectable from w in�.
(ii) πw��� is controllable.

Note that ���� � ��πw���� holds under Assump-
tion 2 (i).

It is easily seen from Lemma 4 that, under Assump-
tion 2, � ��∆ is robustly stable against ∆Φif and
only if the full interconnection πw�����∆ is robustly
stable. Thus, we obtain the following results from
Lemmas 4,5 and Theorems 1, 2.

Theorem 3. Let � � �q�n
cont and Φ � �

q�q
s �ζ �η � be

given. Under Assumption 2, the partial interconnec-
tion���∆ is robustly stable against ∆Φ if πw��� is
Φ-passive.

Theorem 4. Let p denote the output cardinality of
πw���. Under Assumptions 1 and 2,���∆ is regular
and robustly stable against ∆ p

Φ if and only if πw��� is
Φ-passive and the liveness condition σ��Φ� � ����
holds.

5. CONCLUDING REMARKS

In this paper, we have studied the robust stability
of an uncertain interconnection with strictly ��Φ�-
passive uncertainty. In the behavavioral framework,
we have given a self-contained proof of the robust
stability condition that the Φ-passivity of the nominal
system together with the liveness condition must be
satisfied in order that the interconnection is regular
and robustly stable against the uncertainty set ∆ p

Φ.

It may be noted that we can easily adapt the present
results to the case of real-valued behaviors, though
we have studied the robust stability of complex-valued
behaviors in this paper.

The analysis result derived in this paper provides an
important insight into the robust stabilization problem
in the behavioral setting. When we solve the robust
stabilization problem under the constraint of regular
interconnection with all possible uncertainty, we need

to find a controller that satisfies the liveness condition
as well as the Φ-passivity. Fortunately, the synthesis
of a Φ-passive system with the liveness condition was
resolved by Willems and Trentelman (2002) and Belur
and Trentelman (2004). Their results are applicable to
the robust stabilization with the regularity constraint.

As a future research topic, it is interesting to examine
the robust stability againt nonstrictly ��Φ�-passive
uncertainty.
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