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1. INTRODUCTION

The duality relationship between free energy and
relative entropy such as presented in (Dupuis and
Ellis, 1997) has a number of important applica-
tions in solving control problems. For example, in
(Dai Pra et al., 1996), this duality was used to
establish a connection between stochastic control
and dynamic games, and in (Boel et al., 2002),
it was used to obtain an error bound for a re-
lated error cost function defined with respect to
a true probability measure. Recently, Petersen et
al. (Petersen et al., 2000) and Ugrinovskii and
Petersen (Ugrinovskii and Petersen, 1999) have
employed the duality relationship to develop a
robust control system design methodology for
stochastic uncertain systems. The duality rela-
tionship between free energy and relative entropy
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also plays an important role in other research
problems; e.g., see (Mitter and Newton, 2003)
for an application to nonlinear estimation and
(Charalambous et al., 2003) for an application
to optimal disturbance attenuation for nonlinear
stochastic uncertain systems.

Over recent decades, hidden Markov models
(HMMs) have been studied in several research ar-
eas such as control theory (Elliott et al., 1994) and
information theory (Ephraim and Merhav, 2002).
It is well-known that the state estimation problem
is a fundamental problem arising in relation to
HMMs. In this problem, given a realized sequence
of the observation process, one endeavors to es-
timate the unobserved sequence of the state pro-
cess. In particular, one usually seeks an estimator
which is optimal in some meaningful sense.

Since HMMs are essentially probabilistic mod-
els, it is desirable to consider a robust state es-



timation problem for uncertain HMMs using a
similar method to that described in (Petersen
et al., 2000; Ugrinovskii and Petersen, 1999).
Then, instead of the expected value of a cost
functional, the conditional expectation of the er-
ror cost, given the σ-algebra generated by the
observation sequence, will be used as the cost
functional for the state estimation problem; see
(Dey and Moore, 1995). Furthermore, the regular
conditional relative entropy between regular con-
ditional probability measures considered as an a

posteriori probability distance will be used as a
measure of the uncertainty in uncertain HMMs.

In the HMM robust state estimation problem con-
sidered in (Xie et al., 2004), the following problem
arises: Solve an unconstrained optimization prob-
lem involving maximization with respect to a class
of regular conditional probability measures. This
optimization problem involves conditional expec-
tations and regular conditional relative entropy
given a σ-algebra generated by the observation
sequence. This motivates us to investigate the
possibility as to whether the duality relationship
between free energy and relative entropy can be
extended to regular conditional relative entropy.
This question is of interest since the duality re-
lationship for relative entropy has been used to
solve a similar optimization problem in (Petersen
et al., 2000; Ugrinovskii and Petersen, 1999). Such
a duality relationship may also be useful in the
other control and estimation problems similar to
those considered in (Boel et al., 2002; Charalam-
bous et al., 2003; Dai Pra et al., 1996; Mitter
and Newton, 2003). In this paper, we establish a
duality relationship between regular conditional
free energy and regular conditional relative en-
tropy given a sub-σ-algebra by using a relation
between the Radon-Nikodym derivative of prob-
ability measures and that of regular conditional
probability measures. All proofs have been omit-
ted in this conference version of the paper.

2. PRELIMINARY RESULTS

Let (Ω,F) be a measurable space. Suppose two
probability measures µ and ν are defined on
the same measurable space (Ω,F). We say a
probability measure µ is absolutely continuous
with respect to a probability measure ν (denoted
by µ � ν) if µ(D) = 0 whenever D ∈ F and
ν(D) = 0. If µ � ν and ν � µ, then µ and ν are
called equivalent and this relation is indicated by
µ ∼ ν.

Definition 1. (Shiryayev, 1984) Let (Ω,F , ν) be a
probability space and G be a sub-σ-algebra of F . A
regular conditional probability measure ν(·|G)(·)
on (Ω,F) given G is a function ν(D|G)(ω) defined
for D ∈ F and ω ∈ Ω such that

(a) For each ω ∈ Ω, ν(·|G)(ω) is a probability
measure on F .

(b) For each D ∈ F , ν(D|G)(·) is a G-measurable
function on Ω and a version of the conditional
probability of D given G. Also

∫

B

ν(D|G)(ω)νG(dω) = ν(DB), ∀B ∈ G

where νG is the restriction of ν to G.

The second statement of the first sentence in Part
(b) of Definition 1 implies that there exists a νG-
null set N such that for all D ∈ F , ν(D|G)(ω) =
ν(D|G), ∀ω ∈ N c = Ω − N . Here, ν(D|G)
denotes the conditional probability given G and
is a function of ω. Note that the νG-null set N is
independent of the sets D ∈ F .

In general, a regular conditional probability mea-
sure may not exist. However if G is generated by
a countable partition of the sample space, then
there always exists a regular conditional probabil-
ity measure given G. Also, if the sample space Ω
is a Polish space (i.e., a complete separable metric
space) and F is its Borel σ-algebra, then for any
probability measure ν on (Ω,F) and any sub-σ-
algebra G ⊆ F , a regular conditional probability
measure of ν given G always exists; see Theorem
1.1.6 in (Stroock and Varadhan, 1979). We next
suppose that the sample space Ω is a Polish space
and F is its Borel σ-algebra. Hence F is separable.
That is, there exists a sequence F1, F2, . . . of
elements of F such that F = σ{F1, F2, . . . }.

We next summarize the relationship between the
absolute continuity of probability measures and
the absolute continuity of the corresponding reg-
ular conditional probability measures; see Part (d)
of Proposition 1.2 in (Wu, 1997) and Lemma 4.4.7
in (Deuschel and Stroock, 1989).

Lemma 2. (a) Suppose µG � νG . If µ(·|G)(ω) �
ν(·|G)(ω), µG -a.s., then µ� ν.

(b) Conversely, if µ � ν, then µ(·|G)(ω) �
ν(·|G)(ω), µG -a.s.

Suppose µ� ν. It follows from Part (b) of Lemma
2 that there exists a µG-null set denoted by Λ ∈ G
such that for each ω ∈ Λc, µ(·|G)(ω) � ν(·|G)(ω).
We now define a family of probability measures
µ̌(·, ω) parameterized by ω ∈ Ω such that

µ̌(·, ω) =

{

µ(·|G)(ω), if ω ∈ Λc;
ν(·|G)(ω), otherwise.

(1)

Hence for each ω, µ̌(·, ω) � ν(·|G)(ω). Also for
each D ∈ F , µ̌(D,ω) is G-measurable. Under
the condition that the σ-algebra F is separable,
using the Martingale Convergence Theorem, we
can construct a nonnegative F × G-measurable
function f(ω′, ω) such that for each ω,



µ̌(D,ω) =

∫

D

f(ω′, ω)ν(dω′|G)(ω); (2)

see Theorem V.58 in (Dellacherie and Meyer,
1982). Here F×G = σ{A1×A2 : A1 ∈ F , A2 ∈ G}.
Then it follows from (1) and (2) that for each
ω ∈ Λc, ∀D ∈ F ,

µ(D|G)(ω) =

∫

D

dµ(·|G)

dν(·|G)
(ω′, ω)ν(dω′|G)(ω). (3)

Here,
dµ(·|G)
dν(·|G)

(ω′, ω) , f(ω′, ω) and is called the

Radon-Nikodym derivative of the regular condi-
tional probability measure µ(·|G)(ω) with respect
to ν(·|G)(ω). Furthermore, (3) implies that for all
D ∈ F ,

µ(D|G)(ω)

=

∫

D

dµ(·|G)

dν(·|G)
(ω′, ω)ν(dω′|G)(ω), µG-a.s.

We next present a chain rule for the regular
conditional probability measure.

Lemma 3. Suppose µ � µ0 � ν as probability
measures defined on (Ω,F).

(a) If ḡ(ω′, ω) is an F × G-measurable function
from Ω×Ω to the extended real line whose integral
∫

Ω
g(ω′, ω)µ0(dω

′|G)(ω) exists for any ω ∈ Ω, then
for any D ∈ F ,
∫

D

ḡ(ω′, ω)µ0(dω
′|G)(ω) =

∫

D

ḡ(ω′, ω)
dµ0(·|G)

dν(·|G)
(ω′, ω)ν(dω′|G)(ω), µ0G-a.s.

(b)
dµ(·|G)

dν(·|G)
(ω′, ω)

=
dµ(·|G)

dµ0(·|G)
(ω′, ω)

dµ0(·|G)

dν(·|G)
(ω′, ω),

ν(·|G)(ω)-a.s. and µG-ω-a.s.
Here, the last equality holds for all ω ∈ Θ ∈ G
and ω′ ∈ Π(ω) ∈ F , where the set Θ satisfies
µG(Θ) = 1 and ν(Π(ω)|G)(ω) = 1, ∀ω ∈ Θ.

We use the Radon-Nikodym derivative given by
(2) to define the regular conditional relative
entropy between regular conditional probability
measures.

Definition 4. Consider two probability measures
µ and ν on (Ω,F) satisfying µ� ν. Let Λ denote
the µG-null set such that ∀ω ∈ Λc, µ(·|G)(ω) �
ν(·|G)(ω). Then the regular conditional relative
entropy of µ(·|G)(ω) with respect to ν(·|G)(ω) is
defined by

R(µ(·|G)‖ν(·|G))(ω)

,







Eµ(·|G)(ω)[log
dµ(·|G)

dν(·|G)
(ω′, ω)], if ω ∈ Λc;

+∞, otherwise

where
dµ(·|G)
dν(·|G)

(ω′, ω) is the Radon-Nikodym deriva-

tive of µ(·|G)(ω) with respect to ν(·|G)(ω).

Since Eµ(·|G)(ω)[log
dµ(·|G)
dν(·|G)

(ω′, ω)] is the rela-

tive entropy between the probability measures
µ(·|G)(ω) and ν(·|G)(ω) for a fixed ω ∈ Λc,
it exists on the extended real line; see Section
1.4 in (Dupuis and Ellis, 1997). This implies
that R(µ(·|G)‖ν(·|G))(ω) is well-defined. Further-

more, Eµ(·|G)(ω)[log
dµ(·|G)
dν(·|G)

(ω′, ω)] as a function

of ω is G-measurable. This follows from the fact
that the regular conditional probability measure
µ(·|G)(ω) is a stochastic (or probability) kernel

from (Ω,G) to (Ω,F) and log
dµ(·|G)
dν(·|G)

(ω′, ω) is

F×G-measurable; see Lemma 1.38 in (Kallenberg,
1997). Hence R(µ(·|G)‖ν(·|G))(ω) is a G-measurable
function from Ω into the extended real line since
for each ω ∈ Λ it is defined to be +∞.

We will use the following equality about the
Radon-Nikodym derivative between regular con-
ditional probability measures to derive our results:

dµ

dν
(ω′) =

dµG

dνG
(ω)

dµ(·|G)

dν(·|G)
(ω′, ω),

ν(·|G)(ω)-a.s. and µG-ω-a.s. (4)

where µ� ν. The proof of equality (4) is included
in the full version of this paper. Other related
equalities concerning the Radon-Nikodym deriva-
tive between regular conditional probability mea-
sures can be found in Lemma 4.4.7 in (Deuschel
and Stroock, 1989). Then, R(µ(·|G)‖ν(·|G))(ω)
can be written as

R(µ(·|G)‖ν(·|G))(ω)

= Eµ[log
dµ

dν
|G](ω) − logEν [

dµ

dν
|G](ω), µG-a.s.

The next lemma will give some properties of
regular conditional relative entropy.

Lemma 5. (a) ∀ω ∈ Ω, R(µ(·|G)‖ν(·|G))(ω) ≥ 0.
(b) R(µ(·|G)‖ν(·|G))(ω) = 0, µG-a.s. if and only if
µ(·|G)(ω) = ν(·|G)(ω), µG -a.s.

Let P(Ω,F ,G, ν) denote the set of all probability
measures on (Ω,F) which are absolutely contin-
uous with respect to ν and whose restrictions to
G and νG are equivalent in the sense of absolute
continuity. That is, if µ ∈ P(Ω,F ,G, ν), then
µ � ν and µG ∼ νG . The probability measure ν
is called the reference probability measure and is
fixed. Let P(Ω,F , ν|G) denote the set of all regular
conditional probability measures defined by

P(Ω,F , ν|G)(ω) , {µ(·|G)(ω) : µ ∈ P(Ω,F ,G, ν)}.

Note that if µ(·|G)(ω) ∈ P(Ω,F , ν|G)(ω), then
µG ∼ νG and µ � ν. Hence, properties which



hold µG-a.s. also hold νG-a.s. and vice versa.

Let P̄(Ω,F , ν|G)(ω)

, {µ(·|G)(ω) : µ(·|G)(ω) ∈ P(Ω,F , ν|G)(ω)

and R(µ(·|G)‖ν(·|G))(ω) <∞, νG-a.s.}. (5)

We first define the (almost sure) convexity of the
set P̄(Ω,F , ν|G)(ω). Then the strict convexity of
the regular conditional relative entropy is defined
on the set P̄(Ω,F , ν|G)(ω) in the sense of almost
sure under νG .

Definition 6. We say that the set P̄(Ω,F , ν|G)(ω)
is convex if the following property holds:

For given µ1(·|G)(ω), µ2(·|G)(ω) in P̄(Ω,F , ν|G)(ω)
and λ ∈ (0, 1), there exists a probability measure
µ̂ on (Ω,F) whose regular conditional probabil-
ity measure µ̂(·|G)(ω) ∈ P̄(Ω,F , ν|G)(ω) satisfies
µ̂(·|G)(ω) = µ1(·|G)(ω)+(1−λ)µ2(·|G)(ω), νG -a.s.
That is, there exists a νG-null set N such that for
each D ∈ F and ∀ω ∈ N c,

µ̂(D|G)(ω) = µ1(D|G)(ω) + (1 − λ)µ2(D|G)(ω).

This property is denoted by

λµ1(·|G)(ω) + (1 − λ)µ2(·|G)(ω) ∈ P̄(Ω,F , ν|G)(ω).

Definition 7. We say that the regular condi-
tional relative entropy R(µ(·|G)‖ν(·|G))(ω) is a
strictly convex function of µ(·|G)(ω) on the set
P̄(Ω,F , ν|G)(ω) in the sense of almost sure under
νG if the following property holds:

For given µ1(·|G)(ω), µ2(·|G)(ω) in P̄(Ω,F , ν|G)(ω)
satisfying µ1(·|G)(ω) 6= µ2(·|G)(ω), νG-a.s., and
λ ∈ (0, 1),

R(λµ1(·|G)(ω) + (1 − λ)µ2(·|G)(ω)‖ν(·|G))(ω)

< λR(µ1(·|G)‖ν(·|G))(ω) + (1 − λ)

R(µ2(·|G)‖ν(·|G))(ω), νG-a.s.

Lemma 8. With the above definitions,

(a) The set P̄(Ω,F , ν|G)(ω) is convex.
(b) R(µ(·|G)‖ν(·|G))(ω) is a strictly convex func-

tion of µ(·|G)(ω) νG-a.s. on P̄(Ω,F , ν|G)(ω).

3. A DUALITY RELATIONSHIP FOR
REGULAR CONDITIONAL RELATIVE

ENTROPY

In order to state our main result, we first in-
troduce a measurable function g(ω) mapping
Ω into the extended real line. Also, we as-
sume that g is either bounded from below or
bounded from above. Then under this assump-
tion, the expectation of g exists, and so does
the conditional expectation of g given G with
respect to any probability measure. Furthermore
for each µ(·|G)(ω) ∈ P̄(Ω,F , ν|G)(ω), we may

assume that R(µ(·|G)‖ν(·|G))(ω) + Eµ[g|G](ω) is
well-defined for each ω. This follows since out-
side of a νG-null set, the regular conditional
relative entropy satisfies R(µ(·|G)‖ν(·|G))(ω) <

∞. Then for each µ(·|G)(ω) ∈ P̄(Ω,F , ν|G)(ω),
R(µ(·|G)‖ν(·|G))(ω)+Eµ [g|G](ω) is G-measurable.
We next give a definition of the notion of es-
sential infimum. There is a similar definition for
the essential supremum of a family of measurable
functions in (Chow and Teicher, 1988) for a fixed
probability measure.

Definition 9. The essential infimum h(ω) of the
family {R(µ(·|G)‖ν(·|G))(ω)+Eµ [g|G](ω), µ(·|G)(ω)
∈ P̄(Ω,F , ν|G)(ω)}, denoted by

h(ω) = einf
µ(·|G)(ω)∈P̄(Ω,F ,ν|G)(ω)

{

R(µ(·|G)‖ν(·|G))(ω) + Eµ[g|G](ω)
}

, (6)

is defined by the properties:

(a) h(ω) is G-measurable;
(b) R(µ(·|G)‖ν(·|G))(ω)+Eµ [g|G](ω) ≥ h(ω), νG-

a.s., ∀µ(·|G)(ω) ∈ P̄(Ω,F , ν|G)(ω);

(c) for any ĥ(ω) satisfying (a) and (b), ĥ(ω) ≤
h(ω), νG-a.s.

Clearly, if such an h(ω) exists, then it is unique in
the sense that two such essential infima are equal
νG-a.s..

Lemma 10. With the above definitions, there
exists a countable subset P̄0(Ω,F , ν|G)(ω) of
P̄(Ω,F , ν|G)(ω) such that

inf
µ(·|G)(ω)∈P̄0(Ω,F ,ν|G)(ω)

{

R(µ(·|G)‖ν(·|G))(ω)

+ Eµ[g|G](ω)
}

= h(ω).

Let N denote the set of all positive integers. Also
let a∧b = min(a, b) and a∨b = max(a, b). We next
give a definition of the notion of lattice property.

Definition 11. A set {ψγ , γ ∈ Γ} is said to have
the lattice property if given γ1, γ2 ∈ Γ, then there
exist γ3, γ4 ∈ Γ such that

ψγ3
= ψγ1

∧ ψγ2
, ψγ4

= ψγ1
∨ ψγ2

, a.s.

Lemma 12. The set

{R(µ(·|G)‖ν(·|G))(ω) + Eµ[g|G](ω),

µ(·|G)(ω) ∈ P̄(Ω,F , ν|G)(ω)}

has the lattice property. Also, there exists a de-
creasing sequence

{R(µn(·|G)‖ν(·|G))(ω) + Eµn [g|G](ω),

µn(·|G)(ω) ∈ P̄(Ω,F , ν|G)(ω)}

such that



lim
n→∞

R(µn(·|G)‖ν(·|G))(ω) + Eµn [g|G](ω) =

einf
µ(·|G)(ω)∈P̄(Ω,F ,ν|G)(ω)

{

R(µ(·|G)‖ν(·|G))(ω)

+ Eµ[g|G](ω)}, νG-a.s.

If g(ω) is a bounded measurable function, then
the essential infimum (6) can be attained in the
set P̄(Ω,F , ν|G)(ω).

Theorem 13. Let g(ω) be a bounded measurable
function. Then the following conclusions hold:

(a) We have the variational formula

− logEν [e−g|G](ω)

= einf
µ(·|G)(ω)∈P̄(Ω,F ,ν|G)(ω)

{

R(µ(·|G)‖ν(·|G))(ω)

+ Eµ[g|G](ω)
}

. (7)

(b) Let µ0 be a probability measure on (Ω,F)
satisfying

dµ0

dν
(ω) = e−g(ω) 1

Eν [e−g(ω)]
, ∀ω ∈ Ω.

Then the infimum in the variational formula (7)
is attained uniquely at µ0(·|G)(ω).

4. A SPECIAL CASE

In this section, we consider a special case in which
the sub-σ-algebra G is generated by a countable
partition of the sample space Ω. Let G be a sub-
σ-algebra of F satisfying

G = σ{B1, B2, . . . } (8)

where Ω = ∪iBi, each Bi is non-empty set, and
Bi ∩ Bj = ∅ for i 6= j. Such B1, B2, . . . define
a countable partition of Ω and each Bi is called
an atom of G. Such a G can be considered to
be generated by a sequence of random variables
with finite or countable range; e.g., in a finite
horizon robust state estimation problem for finite-
alphabet hidden Markov models, such a G is gen-
erated by the observation sequence. It is obvious
that G is separable.

Consider the reference probability measure ν on
(Ω,F). For each D ∈ F , we define a function for
ω ∈ Ω and D ∈ F as follows:

ν(D|G)(ω) =







ν(DBi)

ν(Bi)
, if ω ∈ Bi, ν(Bi) > 0;

ν(D), if ω ∈ Bi, ν(Bi) = 0.
(9)

Hence ν(·|G)(·) is a regular conditional probability
measure relative to F given G. Next the regular
conditional probability measure of any probability
measure on (Ω,F) given G is defined by (9).

Let A denote the class of all atoms with positive
probability under νG . Also, let Ā denote the

class of all atoms with zero probability under
νG . Let ν(·|Bi) denote the conditional probability
measure with respect to ν given Bi ∈ A. It follows
from (9) that the regular conditional probability
measure ν(D|G)(ω) for each D ∈ F and ω ∈ Ω
can be written as

ν(D|G)(ω)

=
∑

Bi∈A

ν(D|Bi)IBi
(ω) +

∑

Bi∈Ā

ν(D)IBi
(ω).

Also for any ω ∈ Bi ∈ A, ν(·|G)(ω) = ν(·|Bi).

Let µ be another probability measure defined on
(Ω,F) satisfying µ � ν. Let AµG

denote the
class of all atoms with positive probability under
µG . Also, let A0

µG
be the union of all atoms

with zero probability under µG . It is obvious that
µG(A0

µG
) = 0 since the number of the atoms of G

is countable.

Without the assumption that F is separable, the
next lemma will state the relationship between
the absolute continuity of probability measures
and the absolute continuity of the corresponding
regular conditional probability measures for the
case in which the sub-σ-algebra G is generated by
a countable partition of the sample space.

Lemma 14. µ(·|G)(ω) � ν(·|G)(ω), µG-a.s. if and
only if µ� ν.

Based on the sufficiency part of Lemma 14,
we now define the Radon-Nikodym derivative of
µ(·|G)(ω) with respect to ν(·|G)(ω) by

dµ(·|G)

dν(·|G)
(ω′, ω)

=







dµ(·|Bi)

dν(·|Bi)
(ω′), ∀ω ∈ Bi ∈ AµG

and ω′ ∈ Ω;

c, ∀ω ∈ A0
µG

and ω′ ∈ Ω.

Here
dµ(·|Bi)

dν(·|Bi)
is the Radon-Nikodym derivative of

µ(·|Bi) with respect to ν(·|Bi) and c is a nonneg-

ative constant. It is obvious that
dµ(·|G)
dν(·|G)

(ω′, ω) is

F × G-measurable. Then

µ(D|G)(ω) =

∫

D

dµ(·|G)

dν(·|G)
(ω′, ω)ν(dω′|G)(ω), µG-a.s.

Furthermore, the regular conditional relative en-
tropy of µ(·|G)(ω) with respect to ν(·|G)(ω),
R(µ(·|G)‖ν(·|G))(ω) given G, is defined by

R(µ(·|G)‖ν(·|G))(ω)

,







Eµ(·|G)(ω)[log
dµ(·|G)

dν(·|G)
(ω′, ω)], if ω ∈ Ω −A0

µG
;

+∞, otherwise.

As before let P(Ω,F ,G, ν) denote the set of all
probability measures on (Ω,F) which are abso-
lutely continuous with respect to ν and whose



restrictions to G and νG are equivalent in the sense
of absolute continuity. Hence, ∀µ ∈ P(Ω,F ,G, ν),
A = AµG

, Ā = ĀµG
, and A0

νG
= A0

µG
. Also,

let P̄(Ω,F , ν|G)(ω) be defined by (5). Note that
the regular conditional probability measures are
defined by (9). For Bi ∈ A, P(Ω,F , ν|Bi) de-
notes the set {µ(·|Bi) : µ ∈ P(Ω,F ,G, ν) and
µ(·|G)(·) is defined by (9)}. Also, let P̄(Ω,F , ν|Bi)
denote the set {µ(·|Bi) : µ(·|Bi) ∈ P(Ω,F , ν|Bi)
and R(µ(·|G)‖ν(·|G))(ω) < ∞, νG-a.s.}. Hence
P̄(Ω,F , ν|G)(ω) = P̄(Ω,F , ν|Bi) ∀ω ∈ Bi ∈ A.

Proposition 15. With the above definition, the
essential infimum h(ω) defined by (6) has the
following representation:

h(ω) =
∑

Bi∈A

inf
µ(·|Bi)∈P̄(Ω,F ,ν|Bi)

{

R(µ(·|Bi)‖ν(·|Bi))

+ Eµ[g|Bi]
}

IBi
(ω) +

∑

Bi∈Ā

cIBi
(ω),

where c is a nonnegative constant.

Note that the duality relationship for standard
relative entropy cannot be directly applied to
each atom in A. This is because of the following
constraint: ∀µ(·|Bi) ∈ P̄(Ω,F , ν|Bi), µG ∼ νG .

Corollary 16. Suppose the sub-σ-algebra G is de-
fined by (8). Under the same conditions as in
Theorem 13, the variational formula (7) holds.
Furthermore, for a given ω belonging to Bi ∈ A,
we have the variational formula

− log Eν [e−g|Bi] =

inf
µ(·|Bi)∈P̄(Ω,F ,ν|Bi)

{

R(µ(·|Bi)‖ν(·|Bi)) + Eµ[g|Bi]
}

.

5. CONCLUSION

In this paper, the well-known duality relationship
between free energy and relative entropy has been
extended to the case where the relative entropy
between two probability measures is conditioned
on a given σ-algebra. An application of the duality
relationship for the regular conditional relative
entropy has been to solve an unconstrained op-
timization problem arising in a finite horizon ro-
bust state estimation problem for hidden Markov
models; see (Xie et al., 2004).
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