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Abstract: The H∞ dynamic output feedback controller design of linear neutral
delay systems is studied using Lyapunov-Krasovskii stability theory and linear
matrix inequality approach. Based on feasibility positive definite solution to the
linear matrix inequalities, we first develop a delay-independent stability criterion
and a sufficient condition which makes the system asymptotically stable and
guarantees the given H∞-bound constraint on the disturbance attenuation; Then,
we present a scheme of designing a dynamic output feedback H∞ controller via
linear matrix-inequality; Finally, a numerical example is given to demonstrate the
validity and effectiveness of the proposed approach. Copyright c©2005 IFAC.
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1. INTRODUCTION

It is well known that delay often occurs in many
dynamic systems such as communication systems,
biological systems, chemical systems and electri-
cal networks. Meanwhile, delay is frequently a
source of instability and performance degradation
in many dynamic systems, and thus consider-
able attention has been paid to the research on
the stability analysis and controller synthesis of
time-delay systems, see (Hale,1977; Els’golts’ and
Norkin, 1973; Kolmanovskii and Myshkis, 1992).

In addition, there are many control systems hav-
ing not only delay in the state but also in the
state derivative. Such dynamic system are referred
to as neutral delay systems(Hu, 1996; Mahmoud,
2000) and (Han, 2002). The theory of neutral
delay-differential systems is of both theoretical
and practical interest. For example, functional dif-
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ferential equations of neutral type are the natural
models of fluctuations of voltage and current in
problems arising in transmission lines. Also, the
neutral systems often appear in the study of auto-
matic control, population dynamics, and vibrating
masses attached to an elastic bar. During the last
two decades, many researchers studied the stabil-
ity analysis and stabilization problem for neutral
delay systems. Numerous delay-independent and
delay-dependent criterions for stability were for-
mulated by means of matrix measure, algebraic
Riccati matrix equations or linear matrix inequal-
ities (LMI s), while only a few works on controller
design for stabilization of the systems has been
explored by some researchers, see(Chukwu, 1992;
Ma, et al., 1995; Tarn,et al., 1996; Verriest, 1996;
) and (Fiagbedzi, 1994).

Recently, Xu, et al.(2001) dealt with the H∞ and
developed positive real control problem for linear
neutral delay systems and the corresponding con-
troller design schemes , The robust H∞ control
problem for linear uncertain neutral delay systems



is considered by Mahmoud(2000), and some suffi-
cient conditions for the solvability were presented,
but these results are based on all state variables
being available for the feedback. Unfortunately,
the states of system are often unknown or only
partially known, so the former methods cannot be
applied. One of the methods to solve this problem
is to design a dynamic output feedback controller.
Up to now, at the knowledge of the author, no
paper treats the H∞ dynamic control problem for
neutral delay systems.

In this paper, we consider the H∞ dynamic out-
put feedback controller design problem for lin-
ear neutral delay systems. The approach here is
based on Lyapunov functionals due to Krasovsii.
A sufficient condition is derived in terms of linear
matrix inequalities. By means of their solutions,
the controller is constructed, which stabilizes the
system and achieves a prescribed level of H∞-
norm bound of the closed loop systems. Finally,
we give a small example to illustrate the validity
of the proposed design procedure.

Notations: The following notations will be used
throughout the paper: Rn denotes the n-dimensional
Euclidean space, Rn×m is the set of n × m real
matrices, In is the n×n identity matrix, diag{· · · }
denotes a block-diagonal matrix. The notation
X > 0(respectively, X ≥ 0) means that the
matrix X is real symmetric positive definite (re-
spectively, positive semi-definite). L2 is the space
of square integrable functions on [0,∞), C

(1)
n,h =

C (1)([−h, 0],Rn) denotes the Banach space of
continuous vector functions mapping the inter-
val [−h, 0] into Rn with the topology of uniform
convergence. The following norms will be used:
|| · || refers to the Euclidean vector norm, || · ||2
denotes the L2-norm, ‖xt‖c1 = sup−h≤θ≤0{‖x(t+
θ)‖, ‖ẋ(t + θ)‖} stands for the norm of a function
φ ∈ C

(1)
n,h. λM (A) and λm(A) mean the largest and

the smallest eigenvalues of matrix A, respectively.

2. PROBLEM FORMULATION

Consider the following linear neutral delay sys-
tems:

ẋ(t) = Ax(t) + A1x(t− h) + A2ẋ(t− h) + Bu(t)
+ B1ω(t) (1)

y(t) = C2x(t) (2)
z(t) = C1x(t) + D1ω(t) (3)
x(t) = φ(t), t ∈ [−h, 0] (4)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm

is the input vector, ω(t) ∈ Rp is the disturbance
input which belongs to L2[0,+∞), z(t) ∈ Rq is
the controlled output, y(t) ∈ Rl is the measure-
ment output. The scalar h > 0 denotes the delay
time in the state and its derivative, φ(t) ∈ Rn is

a continuous vector valued initial function. A, A1,
A2, B, B1, C1, C2 and D1 are known constant
matrices with appropriate dimensions.

Now we consider the problem of the output-
feedback control by using a state observer-based
control scheme. Let the state observer be de-
scribed by

ξ̇(t) = Aξ(t) + A1ξ(t− h) + A2ξ̇(t− h)+
L (y(t)− ŷ(t)) + Bu(t), (5)

u(t) = Kξ(t). (6)
ŷ(t) = Cξ(t). (7)

Introducing the variables

e(t) = x(t)− ξ(t), x̃(t) = [xT (t), eT (t)]T ,

ω̃(t) = [ωT (t), ωT (t)]T (8)

then the closed-loop system corresponding to (1)-
(3), (5)-(8) is

˙̃x(t) = Ax̃(t) + A1x̃(t− h) + A2
˙̃x(t− h) + B1ω̃(t)

(9)

z(t) = C1x̃(t) + D1ω̃(t) (10)

where A =
[
Ac −BK
0 Al

]
, A1 =

[
A1 0
0 A1

]
,

A2 =
[
A2 0
0 A2

]
, B1 =

[
B1 0
0 B1

]
, C1 =

[
C1 0

]
,

D1 =
[
D1 0

]
, Ac = A + BK, Al = A− LC2.

Our objective is to design of a feedback controller
which stabilizes the system and achieves a pre-
scribed level of H∞-norm bound γ of the closed
loop systems (9), i.e. ‖z(t)‖2 < γ‖ω(t)‖2.
In the next section we shall develop LMI -based
methodologies for solving the above problems. We
conclude this section by introducing two facts
which will be used in the proof of our results.

Fact 1(Schur complement)(Boyd et al., 1994)
Given constant symmetric matrices Ω1,Ω2,Ω3,
where Ω1 = ΩT

1 , 0 < Ω2 = ΩT
2 , then Ω1 +

ΩT
3 Ω−1

2 Ω3 < 0 if and only if
[
Ω1 ΩT

3

Ω3 −Ω2

]
< 0

[−Ω2 Ω3

ΩT
3 Ω1

]
< 0.

Fact 2. The solvability of the following two ma-
trix inequalities

Φ =
[
Φ11 Φ12

ΦT
12 Φ22

]
< 0 and

{
Φ11 < 0
Φ22 < 0

are equivalent, where Φ11, Φ12 are a matrix
functions with respect to X = (X1, X2, X3), Φ22

is a homogeneous matrix function with respect to
Y = (Y1, Y2, Y3), Xi > 0, Yi > 0, i = 1, 2, 3 are
matrices variables.

Proof. The result is trivial if one of the matrices
inequalities has no solutions, so it only suffices to
prove the case which the two matrices inequalities
have solution. In fact, it is obvious that the



solution to Φ < 0 satisfies the inequalities, Φ11 <
0 and Φ22 < 0. On the other hand, if X =
(X1, X2, X3) and Y = (Y1, Y2, Y3) are solutions
to Φ11 < 0 and Φ22 < 0 respectively, then

Φ22(λY )− ΦT
12(X)Φ−1

11 (X)Φ12(X)

= λΦ22(Y )− ΦT
12(X)Φ−1

11 (X)Φ12(X),

So if λ > 0 is sufficiently large, then Φ22 −
ΦT

12Φ
−1
11 Φ12 < 0 holds. By Fact 1, we get (X, λY )

is a set of solutions to Φ < 0. This completes the
proof.

Remark 1. Fact 2 plays a key role in our article,
so we present the proof in detail.

Remark 2. Φ22 is a homogeneous matrix function
with respect to Y = (Y1, Y2, Y3) means that there
exists a Positive number λ such that Φ22(λY ) =
λΦ22(Y ).

3. MAIN RESULTS

In the sequel we will present our main results on
H∞ dynamic output control.

3.1 H∞ Performance Analysis

In this section, we will focus on the H∞ perfor-
mance analysis for the system (1)-(3). In order to
solve this problem, we first consider the problem
of asymptotic stability for the system (1)-(3) with
u(t) = 0 and ω(t) = 0, i.e.

ẋ(t) = Ax(t) + A1x(t− h) + A2ẋ(t− h), (11)
x(t) = φ(t), t ∈ [−h, 0]. (12)

Theorem 1. System (11) is asymptotically stable
if there exist matrices X > 0, Y > 0, Z > 0
satisfying the following LMI :




AX + XAT A1Y A2Z XAT X

Y AT
1 −Y 0 Y AT

1 0
ZAT

2 0 −Z ZAT
2 0

AX A1Y A2Z −Z 0
X 0 0 0 −Y




< 0 (13)

where X = P−1, Y = H−1, Z = S−1.

Proof. Define the following Lyapunov functional
candidate for the system (11):

V (xt) = xT (t)Px(t) +
∫ t

t−h

xT (s)Hx(s)ds

+
∫ t

t−h

ẋT (s)Sẋ(s)ds, (14)

where xt(θ) = x(t + θ), θ ∈ [−h, 0]. Apparently,
there exist constants δ1 and δ2 such that

δ1‖x(t)‖2 ≤ V (xt) ≤ δ2‖xt‖2c1
For example, take δ1 = λmin(P ), δ2 = λmax(P ) +
h[λmax(H) + λmax(S)].

For the sake of simplicity, we write x(t) = x,
x(t − h) = xh, ẋ(t − h) = ẋh, ω(t) = ω in
the following proof. The time derivative of V (xt)
along the solution of Eq.(11) is given by

d
dt

V (xt) = x̄T Ω1x̄ (15)

where Ω1 =




Φ PA1 + AT SA1 PA2 + AT SA2

∗ AT
1 SA1 −H AT

1 SA2

∗ ∗ AT
2 SA2 − S


,

Φ = PA + AT P + H + AT SA, x̄ = [xT xT
h ẋT

h ]T .

Under the condition of Theorem 1, we have
d
dtV (xt) < 0 using the Fact 1. Applying Lyapunov-
Krasovskii stability theory, we can obtain the
asymptotical stability of System (11).

Remark 3. Some connections betweens the sta-
bility results obtained using the norms ‖xt‖c =

sup
−h≤θ≤0

{‖x(t + θ)} and ‖xt‖c1 could be found in

Els’golts’ and Norkin(1973).

We now give the solution to H∞ performance
analysis problem based on Theorem 1. Consider
system (1)-(3)with u(t) = 0, i.e.

ẋ(t) = Ax(t) + A1x(t− h) + A2ẋ(t− h) + B1ω(t),
(16)

z(t) = C1x(t) + D1ω(t) (17)
x(t) = φ(t), t ∈ [−h, 0]. (18)

Theorem 2. Given scalar γ > 0, the system (16)-
(18) is asymptotically stable with disturbance
attenuation γ if there exist symmetric positive-
definite matrices X, Y , Z satisfying the following
LMI :



G(X) A1Y A2Z B1 XAT XCT
1 X

Y AT
1 −Y 0 0 Y AT

1 0 0
ZAT

2 0 −Z 0 ZAT
2 0 0

BT
1 0 0 −γ2I BT

1 DT
1 0

AX A1Y A2Z B1 −Z 0 0
C1X 0 0 D1 0 −I 0
X 0 0 0 0 0 −Y




< 0,

(19)
or



G(X) AT
1 Y AT

2 Z CT
1 XA XB1 X

Y A1 −Y 0 0 Y A1 0 0
ZA2 0 −Z 0 ZA2 0 0
C1 0 0 −γ2I C1 D1 0

AT X AT
1 Y AT

2 Z CT
1 −Z 0 0

BT
1 X 0 0 DT

1 0 −I 0
X 0 0 0 0 0 −Y




< 0,

(20)
where X, Y , Z are same as in Theorem 1, G(X) ,
AX + XAT .

Proof. By applying Theorem 1, the asymptotic
stability of the system (11) follows from the in-
equality (19) or (20).



Next, we are only to establish the H∞ perfor-
mance for the system (16)-(18), assuming zero
initial conditions for Eq.(16). Replacing P, H, S
with X, Y, Z in (19), multiplying (19) on both
sides by diag{P, H, S, I, I, I, I} and then applying
Schur complement to the result, we have

Ω2 =




Γ PA1 + AT SA1

AT
1 P + AT

1 SA AT
1 SA1 −H

AT
2 P + AT

2 SA AT
2 SA1

BT
1 P + BT

1 SA + DT
1 C1 BT

1 SA1

PA2 + AT SA2 PB1 + AT SB1 + CT
1 D1

AT
1 SA2 AT

1 SB1

AT
2 SA2 − S AT

2 SB1

BT
1 SA2 BT

1 SB1 + DT
1 D1 − γ2I


 < 0

(21)

where Γ = PA + AT P + H + AT SA + CT
1 C1.

With the zero initial conditions(x(t) = 0, t ∈
[−τ, 0]), we consider

JT =
∫ T

0

(zT (t)z(t)− γ2ωT (t)ω(t) + V̇ (xt)

− V̇ (xt))dt

≤
∫ T

0

(zT (t)z(t)− γ2ωT (t)ω(t) + V̇ (xt))dt

Since the time derivative of V (xt) along the tra-
jectory of Eq.(16) is given by

V̇ (xt) = ẋT (t)Px(t) + xT (t)Pẋ(t) + xT (t)Hx(t)

+ ẋT (t)Sẋ(t)− xT (t− h)Hx(t− h)

− ẋT (t− h)Sẋ(t− h)

= ηT Ω3η

where

Ω3 =




PA + AT P + H + AT SA PA1 + AT SA1

∗ AT
1 SA1 −H

∗ ∗
∗ ∗

PA2 + AT SA2 PB1 + AT SBT
1

AT
1 SA2 AT

1 SB1

AT
2 SA2 − S AT

2 SB1

∗ BT
1 SB1


 ,

η = [xT , xT
h , ẋT

h , ωT ]T .

zT (t)z(t)− γ2ωT (t)ω(t)

=




x
xh

ẋh

ω




T 


CT
1 C1 0 0 CT

1 D1

0 0 0 0
0 0 0 0

DT
1 C1 0 0 DT

1 D1 − γ2I







x
xh

ẋh

ω


 ,

hence

zT (t)z(t)− γ2ωT (t)ω(t) + V̇ = ηT Ω2η < 0,

where Ω2 is defined as the former, this means
∫ T

0

zT (t)z(t)dt < γ2

∫ T

0

ωT (t)ω(t))dt

≤
∫ ∞

0

ωT (t)ω(t))dt

holds for all T > 0. Hence controlled output
z(t) ∈ L2[0,∞) and satisfies ‖z‖2 ≤ γ||ω||2,
which concludes the proof.

3.2 H∞ Dynamic Output Control

In this subsection, we’ll present a solution to
the H∞ dynamic output control problem for the
system (9)-(10) based on the H∞ performance
analysis in Theorem 2.

By considering Theorem 2, the system (9)-(10) is
asymptotically stable with disturbance attenua-
tion γ if the following matrix inequality holds :



F (X) A
T

1 Y A
T

2 Z C
T

1 XA XB1 X
Y A1 −Y 0 0 Y A1 0 0
ZA2 0 −Z 0 ZA2 0 0
C1 0 0 −γ2I C1 D1 0

A
T
X A

T

1 Y A
T

2 Z C
T

1 −Z 0 0
B

T

1 X 0 0 D
T

1 0 −I 0
X 0 0 0 0 0 −Y




< 0,

(22)
where F (X) = A

T
X + XA, X = diag{X1 X2},

Y = diag{Y1 Y2}, Z = diag{Z1 Z2} are positive
definite matrices. A, A1, A2, C1, D1, X, Y , Z are
same as the former.

Exchanging some rows and corresponding columns
of the matrix in (22), we have

[
Φ11 Φ12

ΦT
12 Φ22

]
< 0 (23)

where

Φ11 =




G1(X1,K) X1Ac AT
1 Y1 X1

AT
c X1 −Z1 AT

1 Y1 0
Y1A1 Y1A1 −Y1 0
X1 0 0 −Y1

Z1A2 Z1A2 0 0
BT

1 X1 0 0 0
C1 C1 0 0

AT
2 Z1 X1B1 CT

1

AT
2 Z1 0 CT

1

0 0 0
0 0 0

−Z1 0 0
0 −I DT

1

0 D1 −γ2I




,

Φ12 =




−X1BK −X1BK 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

Φ22 =




G2(X2) X2Al AT
2 Z2 X2B1 AT

1 Y2 X2

AT
l X2 −Z2 AT

2 Z2 0 AT
1 Y2 0

Z2A2 Z2A2 −Z2 0 0 0
BT

1 X2 0 0 −I 0 0
Y2A1 Y2A1 0 0 −Y2 0
X2 0 0 0 0 −Y2




,



G1(X1,K) = AT
c X1 + X1Ac, G2(X2) = AT

l X2 +
X2Al.

Note that Φ11, Φ12, Φ22 satisfy the conditions
of Fact 2. Applying Fact 2, we obtain that the
condition of (23) has a solution is equivalent to
that Φ11 < 0 and Φ22 < 0 have solutions.

Taking K = −BT X1 and substituting it into Φ11,
we have

Φ11 =




AT X1 + X1A− 2Ξ X1A− Ξ
AT X1 − Ξ −Z1

Y1A1 Y1A1

X1 0
Z1A2 Z1A2

BT
1 X1 0
C1 C1

AT
1 Y1 X1 AT

2 Z1 X1B1 CT
1

AT
1 Y1 0 AT

2 Z1 0 CT
1

−Y1 0 0 0 0
0 −Y1 0 0 0
0 0 −Z1 0 0
0 0 0 −I DT

1

0 0 0 D1 −γ2I




≤




AT X1 + X1A− Ξ X1A

AT X1 −Z1 + Ξ
Y1A1 Y1A1

X1 0
Z1A2 Z1A2

BT
1 X1 0
C1 C1

AT
1 Y1 X1 AT

2 Z1 X1B1 CT
1

AT
1 Y1 0 AT

2 Z1 0 CT
1

−Y1 0 0 0 0
0 −Y1 0 0 0
0 0 −Z1 0 0
0 0 0 −I DT

1

0 0 0 D1 −γ2I




≤




Σ1 X1A AT
1 Y1 X1 AT

2 Z1 X1B1

AT X1 −Z1 AT
1 Y1 0 AT

2 Z1 0
Y1A1 Y1A1 −Y1 0 0 0
X1 0 0 −Y1 0 0

Z1A2 Z1A2 0 0 −Z1 0
BT

1 X1 0 0 0 0 −I
C1 C1 0 0 0 D1

0 BT
1 X1 0 0 0 0

CT
1 0

CT
1 X1B
0 0
0 0
0 0

DT
1 0

−γ2I 0
0 −I




= ∆ (24)

where Σ1 = AT X1+X1A+QBBT QT−QBBT X1−
Ξ, Ξ = X1BBT X1. Thus for a given matrix
Q, ∆ < 0 is a LMI, here we use the inequal-
ity −X1BBT X1 ≤ QBBT QT − QBBT X1 −

X1BBT QT . In fact, for any matrix Q with appro-
priate dimension, (Q − X1)BBT (Q − X1)T ≥ 0
holds.

From Schur complement, ∆ < 0 is equivalent to




Σ1 X1A AT
1 Y1 X1 AT

2 Z1

AT X1 −Z1 AT
1 Y1 0 AT

2 Z1

Y1A1 Y1A1 −Y1 0 0
X1 0 0 −Y1 0

Z1A2 Z1A2 0 0 −Z1

BT
1 X1 0 0 0 0
C1 C1 0 0 0
0 BT

1 X1 0 0 0

X1B1 CT
1 0

0 CT
1 X1B

0 0 0
0 0 0
0 0 0
−I DT

1 0
D1 −γ2I 0
0 0 −I




< 0, (25)

By the similar way, take L = X−1
2 N , then Φ22

becomes the following LMI:




Σ2 Σ3 AT
2 Z2 X2B1 AT

1 Y2 X2

ΣT
3 −Z2 AT

2 Z2 0 AT
1 Y2 0

Z2A2 Z2A2 −Z2 0 0 0
BT

1 X2 0 0 −I 0 0
Y2A1 Y2A1 0 0 −Y2 0
X2 0 0 0 0 −Y2




< 0

(26)
where Σ2 = AT X2 + X2A−NC2 −CT

2 NT , Σ3 =
X2A−NC2.

If the inequalities (25), (26) hold, then (23) holds.
Moreover, if (Xi, Yi, Zi), i = 1, 2 are solutions to
(25) and (26), respectively, we can get the control
gain matrix K = −BT X1, and observer gain
matrix L = λX−1

2 N , where the positive number
λ is determined by

λΦ22(X2, Y2, Z2)− ΦT
12(X1, Y1, Z1)

× Φ−1
11 (X1, Y1, Z1)Φ12(X1, Y1, Z1) < 0 (27)

Summarizing the above analysis, about the H∞
dynamic output control problem of the system
(9)-(10), we have the following result.

Theorem 3. Consider system (9)-(10) with a
given matrix Q. If there exist matrices Xi >
0, Yi > 0, Zi > 0, i = 1, 2 and N satisfying
(25) and (26), respectively, then system (9)-(10)
is asymptotically stable with disturbance atten-
uation γ. Moreover, control gain matrix and ob-
server gain matrix are given by K = −BT X1,
L = λX−1

2 N , respectively, where the positive
number λ is determined by (27).

Remark 3. The positive number λ determined by
(27) is not unique. We can obtain the minimum of
it by using the function mincx in Matlab software.



4. NUMERICAL EXAMPLE

In this section, a numerical example is presented
to illustrate the effectiveness of the proposed
method in this paper.

Example Consider the following neutral delay

system with A =
[−1 1

1 −1

]
, A1 =

[
0.15 0.05
0 0.1

]
,

A2 =
[−0.05 0.02

0.01 0

]
, B =

[
0.5
1

]
, B1 =

[−0.01
0.03

]
,

C1 =
[

1 1
−1 0

]
, C2 =

[
1 1

]
, D1 =

[
0.5 0.01

]
,

Let γ = 1, Q =
[
1 2
0 1

]
. Based on the Theorem 3,

using the function mincx in Matlab software, we
obtain λmin = 2.4310 by solving LMIs (25), (26)
and (27), the corresponding solutions to the LMI s
are

X1 =
[
4.8485 0.5449
0.5449 3.4759

]
, Y1 =

[
18.2579 −0.8855
−0.8855 18.1880

]
,

Z1 =
[

20.0207 −0.6683
−0.6683 19.6801

]
, X2 =

[
6.7098 1.2049
1.2049 6.6086

]
,

Y2 =
[
19.3482 0.7075
0.7075 19.7011

]
, Z2 =

[
20.7215 0.9112
0.9112 20.2727

]
,

K =
[−2.9692 −3.7484

]
, L =

[
1.4326
1.3457

]
,

Consequently, we can get the H∞ dynamic output
controller:

ξ̇(t) =
[−3.9171−2.3067
−3.3149−6.0941

]
ξ(t) +

[
0.15 0.05
0 0.1

]
×

ξ(t− h) +
[−0.05 0.02

0.01 0

]
ξ̇(t− h)

+
[
1.4326
1.3457

]
y(t)

u(t) =
[−2.9692−3.7484

]
ξ(t)

5. CONCLUSIONS

In this paper, the H∞ dynamic output feedback
controller design problem for linear neutral delay
systems is considered. A sufficient condition is
derived in terms of linear matrix inequalities. By
means of their solutions, the controller is con-
structed, which stabilizes the system and achieves
a prescribed level of H∞-norm bound of the closed
loop systems. Finally, we give a small example
to illustrate the validity of the proposed design
procedure.
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