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Abstract: This paper considers the decentralized dynamic programming path
planning decision processes of multiple cooperating autonomous aerial vehicles
(UAVs) engaged in a search of an uncertain environment. However, what sets this
paper apart from previous work is that a functional approximation is used for the
dynamic programming (DP) cost-to-go function, resulting in improved quality of
the decisions made while retaining computationally feasibility. Some of the effects
of the changes are measured by simulation analysis, and the results are presented.
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1. INTRODUCTION

The usefulness of autonomous vehicles, in both
civilian and military contexts, has resulted in
a great deal of attention for control of these
types of systems. This paper investigates the
case where multiple vehicles must cooperatively
act together by planning paths to meet some
global goal, which is a far more complex case
than a single vehicle acting alone. This area,
cooperative control of unmanned aerial vehicles
(UAVs), has a growing body of research which
has been advancing rapidly in recent literature.
A great deal of work in cooperative decision and
path planning is in the area of “point-to-point”
paths, where the vehicles have a given destination
or set of destinations to travel to, and must find
efficient ways to travel to those destinations, and
is a type of vehicle routing and /or task allocation
problem. While this area has produced many

good results—see e.g. (Bellingham et al., 2002)
and many others—the methods utilized are, in
general, not directly applicable to cooperative
search in an uncertain environment, where the
reduction in uncertainty about the environment is
of larger importance than the vehicle traveling to
specific locations. Some work on cooperative UAV
search has been done: see (Rajnarayan and Ghose,
2003); (Hespanha et al., 1999); and previous work
by the authors of this paper e.g. (Flint et al.,
2003b), (Flint et al., 2003a), (Flint et al., 2004);
and others.

As in previous work by the authors of this paper,
a dynamic programming algorithm (Bertsekas,
2000) is presented which tries to address the prob-
lem of optimality under feasibility constraints.
The central problem is the trade-off, made when
implementing a dynamic programming algorithm,
between optimality and computational complex-



ity. The previous work of the authors utilized a
rolling horizon approximation in order to guar-
antee feasibility. However, this approximation
greatly shortened the planning horizon, taking
it from the entire mission (in the optimal case)
to just a few time steps (which is guaranteed
to be feasible). This approach is extended and
improved in this paper by using a type of Approx-
imate Dynamic Programming (ADP), which takes
the form of several modular approximations that
can present information that exists outside of the
planning horizon to the vehicles, but at the same
time preserving the guaranteed feasibility. Some
simulation results show the improvement that can
be gained from using the elements outlined in this
paper.

2. PROBLEM FORMULATION AND
FEASIBLE SOLUTION

2.1 The Dynamic Programming Formulation

For a cooperative UAV search mission, each ve-
hicle must search to locate objects in order to
complete the mission. To create a framework in
which the best decision of where to place the vehi-
cles’ paths can be calculated, first the state of the
environment is defined. This state is comprised of:
the search status, i.e. what objects there are, and
their level of uncertainty in location, probability
of existence, and probability of classification; the
vehicle status, i.e. what vehicles there are whether
and whether the vehicles are functioning or not;
and the vehicle positions, i.e. their latitudes and
longitudes. If the vehicle can communicate with
one another, they can form a comprehensive view
of the state. (However, it is possible for a vehicle to
make decisions based on whatever state informa-
tion is available in the case of limited or delayed
communications.)

With the state defined in this manner, the prob-
lem can then be modeled as a Markov decision
process, with certain states giving the vehicle
rewards (e.g. states in which search objects are
located and classified or when a vehicle returns
from a mission undestroyed). As the scenario pro-
gresses and the vehicles move and act, the system
comprised of the team of vehicles transitions from
state to state, possibly in a stochastic manner.
There are at least three important sources of ran-
domness within this environment. First, unknown
locations of the search objects makes the detection
or failure of detection of these objects a random
event. Secondly, and adding to the first source,
the sensors are not assumed to be perfect, and
are instead modeled to include errors that occur
probabilistically. Lastly, because the problem is
decentralized, with each vehicle making its own
decisions, the actions of other vehicles are not

necessary known to the other vehicles, and the
effects of the other vehicles must also be modeled
probabilistically.

Now, since the paths that the vehicles take is
controllable, it is possible to create a planning
algorithm such that some control over the state
transitions is gained. Using Dynamic Program-
ming (DP), it is theoretically possible to develop
an optimal policy, which dictates the best deci-
sions (Bertsekas, 2000), in terms of the number of
targets identified, to make in each possible state
so that the maximum expected global reward is
achieved over the course of the entire mission. As-
sume that the mission duration is N decision time
steps; i.e. that a vehicle will makeN decisions over
the course of the mission. Further, define Jk(xk) as
the “cost-to-go” at decision time step k (actually,
this is the accepted terminology, even though in
this case the problem is formulated to maximize
the number of targets identified rather than min-
imize cost—they are mathematically equivalent
problems), and represents the expected number
of targets identified by the vehicles as they travel
from time step k to the end of the mission. In the
ideal case (i.e. unlimited computational power),
the optimal decisions can be found by taking the
arguments of the maximization of the Dynamic
Programming recursion (Bertsekas, 2000),

Jk(xk) = max
uk∈Ω

{Ewk
{g(xk, uk, wk)

+ Jk+1(f(xk, uk, wk))}}. (1)

In this equation, the state at a time step k is xk,
the vehicle assignments (or control) are uk which
come from a set of possible assignments Ω, such
as: turn left, turn right, ascend, descend, or go
straight. The stochastic elements are contained in
wk. The term g(xk, uk, wk) is the single step gain.
Note that xk+1 = f(xk, uk, wk), which produces
the next state from the current state, control, and
stochastic elements.

For ease of presentation for the remainder of this
paper, let Φk represent the set [xk, uk, wk], noting
that the index of each member is the same as
that of Φ. In equation (1), g(Φk) represents the
gain that can be had at the present time, and
Jk+1(f(Φk)) represents the predicted gain from
future times.

2.2 The Single Step Gain

In order to calculate the cost-to-go of Equation
(1) in an algorithmic manner, the expected values
of the terms therein must be calculated. The
first term, the single step gain, is examined first,
following work done in (Flint et al., 2003a). Let σk

be the search gain (i.e. the value of g(Φk) in the



best case) for a vehicle at time step k. Let Ψk be
the probability of another vehicle interfering with
the planning vehicle at time k (refer to (Flint et

al., 2003b) for details on this value). Let δk be the
probability that the planning vehicle is alive at
time k.

Assume that vehicles cause the uncertainty in
the environment for all objects to decrease by
a set amount, such that there exists some 0 ≤
ρ ≤ 1 such that if another vehicle interferes,
the vehicle receives gain (1 − ρ)σk. If no vehicle
interferes, then the vehicle receives gain σk. This
assumption is good as long as there are no pop-up
objects and if the vehicles’ sensors can be modeled
probabilistically to generate the value of ρ (See
(Flint et al., 2004) for a formulation that uses
such a model.) Also assume that multiple vehicles
interfering will produce a negligible difference
from a single vehicle interfering. Next, if a vehicle
is destroyed, then it receives 0 gain for the time
step. However, if it is alive, then it receives full
(unity) gain. Thus, the expected value of the
single step gain can be written as:

E{g(Φk)} = δkσk(1 − ρΨk) (2)

2.3 The Future Gain

Now that the single step gain is defined, the next
step to find the cost-to-go for the system at time
k is to iterate the recursion in (1).

The terminal cost of the search mission is assumed
to be JN for all xN , and is achieved at the end of
the search mission. The complete cost-to-go for
any time step k is then found by iterating enough
times until the terminal cost is reached. This gives

Jk(xk) = max
uk∈Ω

{Ewk
{g(Φk) + (3)

max
uk+1∈Ω

Ewk
{g(Φk+1) + . . .+

max
uN−1∈Ω

Ewk
{g(ΦN−1) +

JN (f(ΦN−1))}}}}.

However, attempting to solve this equation for the
optimal cost to go produces a very complex prob-
lem, since the “curse of dimensionality” causes
an explosion of possible states to examine over
large values of (N − k), i.e. the planning horizon
of the entire mission. Past work by the authors
(e.g. (Flint et al., 2003b) and (Flint et al., 2004))
has utilized a rolling horizon limited lookahead
policy (see Section 6.3 of (Bertsekas, 2000))) to
make the problem feasible, at a cost of optimality,
with a good degree of success. This rolling horizon
approximation defines a horizon of time steps r,

then replaces the value of Jk+r+1 with the final
cost JN . This gives, instead of equation (3),

Jk(xk) = max
uk∈Ω

{Ewk
{g(Φk) + (4)

max
uk+1∈Ω

Ewk
{g(Φk+1) + . . .+

max
uN−1∈Ω

Ewk
{g(Φk+r) +

JN (f(Φk+r))}}}}.

Since r can be chosen such that k+ r << N , this
produces a much smaller problem space, which
can be solved exactly to yield an optimal answer
to the sub-problem. However, this solution is not
necessarily an optimal solution to the main prob-
lem. This creates a fundamental tradeoff between
feasibility and optimality.

2.4 Cost-to-go Functional Approximation

A solution to this dilemma is to modify the
rolling horizon approximation using a heuristic
cost-to-go approximation similar to those shown
in Section 6.3.4 of (Bertsekas, 2000). As defined in
this reference, this method utilizes an appropriate
scoring function to evaluate the position of the
vehicle at the end of the planning horizon. The
limited horizon approximation is still used, but
instead of using the terminal cost for time N , the
scoring function is used as an approximation of
the actual cost-to-go. Thus, an approximate cost-
to-go J̃ is created such that

J̃(Φk+r) ≈ JN (f(Φk+r)). (5)

The optimization is then performed on the Ap-
proximate Dynamic Programming equation

Jk(xk) = max
uk∈Ω

{Ewk
{g(Φk) + (6)

max
uk+1∈Ω

Ewk
{g(Φk+1) + . . .+

max
uN−1∈Ω

Ewk
{g(Φk+r) +

J̃(f(Φk+r))}}}}.

This has the benefit of always producing a feasible
result, since the rolling horizon is still in effect.
However, if the Approximate Dynamic Program-
ming scoring function accurately approximates
the cost-to-go, then the solution will be closer
to the true optimum than just the rolling hori-
zon solution alone, which is more myopic. The
problem then becomes one of creating an approx-
imation that is accurate and feasible. Since this
is expected to be a problem that can be solved
incrementally, it is desired that the approximation
be developed in a modular fashion, so that the
elements and parameters can be added, removed,
or refined individually, in order to be able to test



the approximations, and adjust what works, and
discard what does not.

With this in mind, let this scoring function (that
approximates the cost-to-go) be defined as the
combination of three modular functions, each of
which contains information important to the fu-
ture gain of the vehicles. This is given by

J̃(Φk) := U
(

L(Φk), I(Φk),M(Φk)
)

. (7)

The value L is a length factor that determines how
far away a potential target is. The function I(Φk)
is an interference prediction factor or cooperation
factor, which attempts to predict the effect of
other vehicle’s actions on the environment. The
function M(Φk) is a mission position factor. This
is high if accomplishing the task puts the vehicle
in a good position to complete the other elements
of the mission. Lastly, the function U(·) takes
the values provided by the other functions and
combines them in an intelligent fashion.

To put some basic heuristics into place in order to
test the concept of the proposed idea, let L(Φk) be
a vector of the same size as the number of objects
in the environment such that for object t, there is
an element of the vector L(Φk) that can be given
by

Lt(Φk) = λt

(

1 − (
dc

t

d∗
)

)

, (8)

where 0 ≤ λ ≤ 1 is the value, or reward for finding,
object t. The value dc

t is the distance from object t
to the planning vehicle c and d∗ is a distance that
is guaranteed to be larger than dc

t for any value of
c and t. Note that 0 < Lt ≤ 1 for all objects t. All
of these values can be calculated from (Φk). This
approximation is based on the fact that, on the
average, during the course of an arbitrary search
mission, more objects can be detected if vehicles
search for objects that are suspected to be close to
them, rather than wasting time traveling to those
that are far away. Thus, this value is high if an
object is nearby, and low if an object is far away.
Of course, the presence of the value (or priority) of
the object (λt) can override this such the vehicles
will bypass lower valued, but closer objects in
favor of farther but more valuable ones.

Next, let I(Φk) be a vector of the same size as
the number of objects in the environment such
that for object t, there is an element of the vector
I(Φk) that can be given by

It =
VN − nt

VN

, (9)

where nt is the number of vehicles that could
potentially be closer to the object t than the plan-
ning vehicle at the point in time where the plan-
ning vehicle would arrive at the state for which

J̃(Φk+r) is being evaluated. The value VN is the
total number of vehicles. All of these values can
be calculated from (Φk). Because of the improve-
ment in search performance that is expected when
vehicles travel to close objects (which is embodied
in L(·)), it is expected that any vehicles closer to
any given object than the planning vehicle will be
more likely to have already searched for it. Thus
this approximates the probability that the object
will not already have been detected by some other
vehicle by the time the planning vehicle gets to it.
Note that 0 < It ≤ 1 for all objects t.

Then, let M(Φk) be a vector of the same size as
the number of objects in the environment such
that for object t, there is an element of the vector
M(Φk) that can be given by

M̂t =











λt

T − 1

∑

z∈Θ,z 6=t

mt
z T > 1

1 T ≤ 1,

(10)

where in this equation z is an arbitrary object out
of the set of all known objects Θ, the total number
of objects in the environment is T ≥ 0, and

mt
z = Km + (dt

max − dt
z). (11)

This value turns the distance into an inverse, or
“closeness”, factor, such that the closer something
is the larger the factor. In this equation, Km > 0
is a constant that keeps the value positive, and

dt
max = max

y,z∈Θ
{dy

z}, (12)

where y and z are arbitrary objects in Θ. Lastly,

Mt =
M̂t

M̂max

. (13)

The value M̂max is the largest value of M̂t for any
object, and ensures that 0 < Mt ≤ 1 for all objects
t. All of these values can be calculated from (Φk).
What this complicated value produces is a low
value for objects that are relatively isolated, or
distant from all other objects. Inversely, a high
value of Mt means that after reaching object
t, relatively many others will be nearby, which
should provide more opportunity for detections,
which should then produce a better overall search
mission.

Lastly, the function U(·) combines these by

U(L(Φk), I(Φk),M(Φk)) = (14)
(

∑

∀t∈Θ

Lt(Φk)It(Φk)Mt(Φk)

)

Ku,

where Ku is a scaling factor to ensure that the
value is appropriate given the single step gains.
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Scenario: 4 UAV, 5 Target

Fig. 1. The simulation environment, showing 4
vehicles’ paths, and the targets (with uncer-
tainty regions).

3. SIMULATION RESULTS

A small simulation study using a custom C++
UAV simulator is included in this paper in order
to illustrate the feasibility of implementing this
approach and to illustrate the improvement to the
performance of cooperative search including these
factors can have. A typical environment used for
these simulations is shown in Figure 1.

In this environment, there exist 4 vehicles, the
paths of which are shown by the dotted and
dashed lines. The vehicles are searching for 5 real
objects, of which 4 are real targets, and 1 is a
false target. The targets are initially given to the
vehicles as a suspected location, i.e. a coordinate
pair, shown as an (x), as well as an uncertainty
region which, if the target exists, it is guaranteed
to be in. The targets are initially assumed to be
distributed equally within the uncertainty region,
so the suspected coordinates given do not provide
any actual information about where within the
uncertainty region the target lies. The actual
location of the target, which the vehicles do not
know, is shown as a (+). The initial probability of
each object being a real object is given as 0.75.
The initial estimate of an object being a real
target is given as 0.75.

The vehicle will consider an object “found” once
its probability of being a real object is greater
than 0.95 and its probability of being a real target
is either 0.75 or above (i.e. relatively sure it’s a
real target) or 0.25 or below (i.e. relative sure
it’s not a real target.) Also, there exists in the
vehicles’ databases a “ghost” object that is not
a real object, but can be used to represent the
probability of there existing any further objects in
the environment. This ghost object’s uncertainty

region consists of the entire search environment
and has initial probability of existence of 0.50.

The vehicles are allowed 3000 seconds (50 minutes)
to conduct their search, and travel at a constant
185.2 m/s (value chosen arbitrarily but assumed
to be close to what an actual UAV would travel
at). Each vehicle is equipped with a sensor that
can detect the ground beneath it as it travels,
using sensor parameters (see (Flint et al., 2004)):
probability of correct positive detection ρ = 0.80,
probability of correct positive classification ψ =
0.80, probability of correct negative classification
ω = 0.95, and probability of correct negative
detection γ = 0.99989583, which for 4 vehicles
and 5 targets gives approximately one false pos-
itive (i.e. detecting one of the 5 targets where it
isn’t) every 4 simulation minutes. Each vehicle is
allowed to make decisions every 30 seconds (each
period of which is a decision time step i.e. one
value of k.) For the parameters used in the future
gain approximations, λt = 1 if the object is not
yet located, and is 0 if it has been located. The
parameters, Km = 1, and Ku = 10, were chosen
arbitrarily.

At each decision time step, the vehicle must
choose to: go straight ahead; ascend or descend
(while going straight); or turn left or right 45
degrees. This limit on maximum turn angle rep-
resents the inability of a vehicle to make very
wide turns due to the g-force limit on flying ve-
hicles. Once the vehicle has made this choice,
the continuous, real-world path of the vehicle is
approximated by allowing it to turn (as appro-
priate) immediately and then travel straight until
the next decision time step. In order to execute
the simulation in a reasonable amount of time,
the rolling horizon of the vehicles is limited to
r = 4 time steps. The vehicles are assumed to
share the results of their sensor actions and their
locations each time step with the other vehicles
over their communication channels. However, the
communication between vehicles is assumed to not
be large enough to allow negotiation to occur, thus
producing a passive kind of cooperation. Aside
from flat ground at an altitude of 0, which will
cause the vehicles to crash if they contact it, there
are no threats present.

The average number of objects “found” during the
course of a mission is shown in Figure 2. The dif-
ference in the performance of the case that utilizes
the Approximate Dynamic Programming (ADP)
and the case that does not use the approximations
is statistically significantly different at a level of
confidence of 95% or more after the lines separate
(about 540 simulation seconds for this figure).
The results shown on this figure demonstrate that
using these approximations can result in a better
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Fig. 2. A comparison of the average number of
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Fig. 3. With only 2 targets in the environment, the
ADP methods produce significantly better
results than previous cases.

search being conducted, even with the very basic
equations developed and presented in this paper.

Two additional results are shown in Figures 3 and
4. In these figures, the same simulation study was
run, to the same level of statistical significance,
as that which produced Figure 2, except that
in the simulation study that produced Figure 3
there were only 2 targets in the environment (1
false and 1 real). In the simulation study that
produced Figure 4 there were 10 targets (8 real
and 2 false). As can be seen in these figures, the
level of improvement of the ADP approximations
is dependent on how much information is actually
available to the vehicles in the limited planning
horizon. In the 2 target case, it is a lot less likely
that no target information is available within the
vehicle’s planning horizon, and so the case without
the ADP is much worse than an in the opposite
case, where with 10 targets it is much more likely
that there is target information to act on in the
vehicle’s planning horizon.

4. CONCLUSIONS

As can be seen from the simulation results, even
these preliminary Approximate Dynamic Pro-
gramming extensions to the previous formulation
can potentially have a large impact on the quality
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Fig. 4. With 10 targets in the environment, the
ADP methods produce a less significant in-
crease in effectiveness.

of a search mission. As was noted earlier, the scor-
ing functions were heuristic in nature. A series of
designed experiments or theoretical analysis can
be conducted that would allow the identification
of important factors in the development of better
scoring functions that more accurately reflect the
true cost-to-go. Using such scoring functions will
cause the search mission to be completed with
even better results.
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