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Abstract: This paper presents a constrained horizon predictive controller based
on a filtered Smith predictor structure (CHSPPC). The proposed algorithm
is particulary appropriate to control dead time systems as it exhibits better
robustness than others, specially when errors in the dead time estimation are
considered. The tuning of the controller parameters includes a low pass filter
that is easy defined to obtain a compromise between performance and robustness.
Simulation results show that the proposed control strategy allows better results
than other approaches. Copyright c©2005 IFAC
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1. INTRODUCTION

Model predictive controllers mpc have received
much attention in recent years and have been
successfully used to control several industrial
processes. The basic idea of a predictive controller
is to compute a sequence of future control signals
in such a way that it minimizes a multistage cost
function defined over a control horizon. The index
to be optimized is normally a quadratic cost con-
sidering the distance between the predicted sys-
tem output and some predicted reference sequence
over the control horizon plus a function measuring
the control effort over the same horizon (Camacho
and Bordons, 1999).

Using these ideas, different algorithms have been
proposed in literature, using linear models to com-
pute the predictions (Clarke and Mothadi, 1989;
Richalet et al., 1976; Kouvaritakis et al., 1992),
and with non-linear ones (Kouvaritakis and Can-
non, 2001). Because of the simplicity and the good
results obtained in practice, mpc based on linear

models have been extensively analyzed. Several
studies of the stability and robustness of these
algorithms have been presented in recent years.
Stability has been addresses using different ap-
proaches. A Stable Generalized Predictive con-
troller, that is based on stabilizing the loop before
the application of the control strategy, is ana-
lyzed in (Kouvaritakis et al., 1992; Rossiter and
Kouvaritakis, 1994; Rossiter et al., 1996). Another
solution that uses terminal constrains in a general-
ized predictive approach was presented in (Clarke
and Scattolini, 1991; Scokaert and Clarke, 1994).
In order to improve the robustness of the mpc
when model uncertainties are considered, different
strategies have been proposed in the literature.
The effects of a prefilter on the robustness of the
closed loop system has been analyzed in several
papers (Clarke and Mothadi, 1989; Robinson and
Clarke, 1991; Kouvaritakis et al., 1992; Yoon and
Clarke, 1995; Ansay and Wertz, 1997). The effect
of the predictor structure on the robustness of
the closed-loop system have been analyzed for
the gpc in (Normey-Rico and Camacho, 1999;



Normey-Rico and Camacho, 2000; Núñez-Reyes
et al., 2005) specially for dead-time systems. In
these papers the robustness of the controller is
improved using a filtered Smith predictor struc-
ture and assuming that the controller parameters
could be tuned so as to obtain nominal closed loop
stability.

To complete the analysis of the predictive control
of dead-time processes it is necessary to obtain
some conditions to guaranty the nominal stability,
thus, in this paper the ideas presented in the
constrained receding-horizon predictive controller
crhpc (Clarke and Scattolini, 1991) are extended
for the Smith predictor generalized predictive con-
troller spgpc (Normey-Rico and Camacho, 1999).
The proposed algorithm allows to obtain a nom-
inal stable closed loop with the same nominal
performance as the crhpc but allowing better ro-
bustness when controlling dead-time processes. In
this sense the proposed algorithm introduce some
advantages if compared to the previous spgpc and
crhpc.

The paper is organized as follows: Section 2
presents the plant model considerations and a
brief revision of the main ideas of the spgpc and
crhpc. The proposed controller is presented in
section 3 showing some of its structure properties.
Section 4 compares the robustness and the closed-
loop performance of the proposed strategy with
the crhpc. Some simulation results are shown in
section 5 and finally the conclusions and perspec-
tives of the work are presented in section 6.

2. PLANT MODEL AND CONTROLLER
REVISION

The dynamic behavior of many industrial processes
near an operating point can be represented by
models consisting of a linear differential equa-
tion and a dead-time. For control purposes simple
models are very important, so in practice low
order models coupled with dead-times are exten-
sively used (Astrom and Hagglund, 1995). The
importance of this approximation is proved by the
fact that the reaction curve method is probably
one of the most popular methods used in industry
for tuning regulators. Thus, in this paper the
model of the plant, for the purpose of tuning the
controller, is represented by a transfer function
with a dead-time. Thus, the correspondent state
space discrete model of the plant is given by a
reachable and observable system with a dead-time
of d samples and without zeros in z = 1.

x(t + 1) = Âx(t) + B̂u(t− d)
y(t) = Ĉx(t)

(1)

To guarantee regulation with zero steady-state
error for constant set-points, let the control vari-

able u be the output of the following discrete-time
integrator:

v(t− d + 1) = v(t− d) + δu(t− d)
u(t− d) = v(t− d) + δu(t− d) (2)

The overall system is then described by:
[

x(t + 1)
v(t− d + 1)

]
= A

[
x(t)

v(t− d)

]
+ Bδu(t)

y(t) = C
[
x(t)T v(t− d)T

] (3)

System (3) admits the input-output representa-
tion:

A(q−1)∆(q−1)y(t) = q−dB(q−1)δu(t− 1) (4)

where q−1 is the backward shift operator and:

A(q−1) = 1 + a1q
−1 + a2q

−2 + ... + anq−n

B(q−1) = b0 + b1q
−1 + b2q

−2 + ... + bn−1q
−(n−1)

∆(q−1) = 1− q−1

Moreover the incremental control action δu(t) is
given by:

δu(t) = u(t)− u(t− 1)) = ∆(q−1)u(t) (5)

2.1 The Smith Predictor Generalized Predictive
Controller

The Smith Predictor Based Generalized Predic-
tive Control algorithm (Normey-Rico and Cama-
cho, 1999) consists of applying a control sequence
that minimizes a multi-stage cost function of the
form:

J =
N2∑

j=N1

ψ(j)[ŷ(t + j | t)− w(t + j)]2

+
N2−d∑

j=1

λ(j)[δu(t + j − 1)]2
(6)

where N1 and N2 are the minimum and maximum
costing horizons, ψ(j) and λ(j) are weighting se-
quences, w(t+ j) is a future set-point or reference
sequence and ŷ(t + j | t) is the j-step ahead
prediction of the system output on data up to
time t. As in Normey-Rico and Camacho (1999)
and because of the dead-time of the process the
horizons N1 and N2 are computed as N1 = d + 1
and N2 = N + d. Thus, N is used as a tuning
parameter to define the horizons.

The prediction of the output of the plant is
computed using the following procedure:

(1) STEP 1: from t + 1 to t + d:



• compute the prediction of the output
using the open loop model of the plant
given by (1).

• correct each open loop prediction adding
the filtered mismatch between the out-
put and the prediction:

e(t) = y(t)− ŷ(t) (7)

ef (t) = F (q−1)e(t) (8)

ŷ(t + d− i | t) ← ŷ(t + d− i | t) + ef (t− i) (9)

where F (q−1) is a low pass filter used as a
tuning parameter that verifies F (1) = 1.

(2) STEP 2: from t+d+1 to t+d+N the predic-
tion of the output of the plant is computed
using an incremental model of the process
(4).

To tune the spgpc the following two-step proce-
dure can be used:

• Choose the controller parameters N , ψ and
λ in order to obtain the desired set-point
performance for the nominal plant.

• Estimate the uncertainties of the plant and
define F to improve the robustness of the
system at the desired frequency region.

The previous procedure can be used when some
information about the plant uncertainties is known
and the set of control specifications is defined in an
unconstrained solution. In these cases the tuning
of the filter must be carried out in order to at-
tempt a compromise between robustness and dis-
turbance rejection because increasing the low pass
characteristics of filter F improves the robustness
and deteriorates the closed loop disturbance re-
sponse (Normey-Rico and Camacho, 1999). This
intuitive rule also works in practice, when infor-
mation about plant uncertainties is poor and/or
constrained optimization is used.

It is also important to note that in the spgpc
the filtering only affects the computation of the
free response of the algorithm and does not
change the optimization procedure. As has been
demonstrated in some experimental tests with real
processes, a first order filter is normally enough
to obtain a robust controller (Núñez-Reyes et
al., 2005).

2.2 The CRHPC

The constrained receding-horizon predictive con-
trol is intended for demanding control applica-
tions where the conventional predictive control
designs can fail. The idea behind crhpc is to
optimize a quadratic function over a costing hori-
zon (6) subject to the following set of M future
equality constraints:

ŷ(t + N2 + j) = w(t + N2)
δu(t + N2 − d + j) = 0 j = 1, ..., M (10)

constraint

t

ŷ(t + j)
y(t− j)

w

costing

Fig. 1. Constrained receding horizon predictive
control.

Using this set of terminal constrains it is possi-
ble to obtain a stable nominal closed loop sys-
tem. This important property is stated as follows
(Clarke and Scattolini, 1991):

If:

• A is nonsingular,
• ψ(j) = ψ̄ ≥ 0, λ(j) = λ̄ > 0 ∀j = 1, ..., N,
• N ≥ n + 2; m = n + 1,

then, the closed-loop system is asymptotically
stable.

This property is also valid for the case of dead-
time systems, since the dead-time is considered
in the choice of the horizons of the cost function
(6) and thus, it does not affect the imposed con-
ditions. That is, a properly choice of the horizons
guaranties that the crhpc can be used to obtain a
stable closed loop system when controlling dead-
time processes.

3. THE PROPOSED CONTROLLER

The proposed controller uses the ideas of the
spgpc and crhpc to obtain a stable closed loop
system with better robustness characteristics than
previous algorithms. To study the characteristics
of the control law the following procedure is used.

Consider first that the values ŷ(t + d|t), ..., ŷ(t +
d−n−1|t) are obtained using the Smith predictor
procedure explained in step 1 of section 2.1. Using
this data, the prediction of the output of the plant
ŷ(t+d+j|t) can be computed recursively applying
the incremental model of the process (4). Thus, for
j = 1, 2, ..., N, ..., N + M , follows:

ŷ = Gu + Hu1 + Sy1 (11)
ˆ̄y = Ḡu + H̄u1 + S̄y1 (12)

where:

ŷ = [ŷ(t + d + 1|t), ..., ŷ(t + d + N |t)]T ,

ˆ̄y = [ŷ(t + d + N + 1|t), ..., ŷ(t + d + N + M |t)]T ,



u = [δu(t), ..., δu(t + N)]T ,

u1 = [δu(t− 1), ..., δu(t− (n− 1))]T ,

y1 = [ŷ(t + d|t), ..., ŷ(t + d− n|t)]T .

G, Ḡ, H, S, H̄ and S̄ are constant matrices of
dimension N × N , N × N N × n − 1, N × n+1,
M × n− 1 and M × n+1, respectively.

The performance index (6) and the constraints
(10) can be written as:

J = [ŷ −w]T Qψ[ŷ −w] + uT Qλu (13)

Ḡu + H̄u1 + S̄y1 = w̄, (14)

where Qψ and Qλ are the weighting matrices.

By the use of Lagrange multipliers, the minimum
of (13) with constraints (14) is obtained by set-
ting:

u = K1[w − f ] + K2[w̄ − f̄ ]
K1 = M{I− ḠT[ḠMḠT]−1ḠM}GTQψ

K2 = MḠT[ḠMḠT]−1,
(15)

where: M = [GTQψG + Qλ]−1, f = Hu1 + Sy1

and f̄ = H̄u1 + S̄y1. The terms f and f̄ are in the
past and correspond to the free response of the
system, that is, the output that would be obtained
if the control signal is kept constant.

According to a receding horizon strategy, eqn. (15)
is to be evaluated at any sampling time, while only
the first element δu(t) of the vector u is effectively
used to compute the control signal u(t). Thus, the
control increment δu(t) can be written as

δu(t) = q[w − f ] + q̄[w̄ − f̄ ]

where q = [q1, ..., qN ] and q̄ = [q̄1, ..., q̄M ] are the
first row of the matrix that multiplies [w − f ] and
[w̄ − f̄ ] respectively in (15). The control law also
can take the form

δu(t) = qw + q̄w̄ + [qH + q̄H̄]u1 + [qS + q̄S̄]y1

where [qH + q̄H̄] = [e1, e2, ..., en−1] and [qS + q̄S̄] =
[c1, c2, ..., cn+1]. The coefficients qi, q̄i, ei and ci

are functions of ai, bi, N , M , ψ(i) and λ(i).

The control scheme proposed is shown in Fig.
2. The controller coefficients (qi, q̄i, ei, ci) are
computed for each choice of N , ψ(i) and λ(i).

y(t)

e1z-1+...+en-1z-(n-1)

c1+...+cn+1z-n-1q̄1+...+q̄M

qN

q2

q1

.

.

.

predictor
Smith

process

+

+ ++

+ 1
1−z−1

w(t+d+1)

w(t+d+2)

w(t+d+N)

.

.

.

+

δu(t)

Fig. 2. Control scheme for CHSPPC.

Note that the CHSPPC uses two different models
of the plant and disturbances. The coefficients of
the control law are computed using an incremental
model as in the crhpc in order to maintain its
nominal stability properties. On the other hand
the robustness qualities of the spgpc are obtained
because a Smith predictor structure is used to
compute the predicted values of the output of the
plant from t+1 to t+d. To analyze the robustness
an equivalent 2DOF structure of the controller
can be used, as the one shown in Figure 3. In the
diagram C(z) and W (z) are given by:

C(z) =
c1 + c2z−1 + ... + cn+1z−n

(1− z−1)(1− e1z−1 − ...− en−1z−n−1)
(16)

W (z) =
q̄1 + ... + q̄M + qN + ... + q1z−N

c1 + c2z−1 + ... + cn+1z−n
(17)

q(t)

+

+ 
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+

-

+
+x
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Process with
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y(t+d) y(t)

   (t)

    u(t)

^ ^

y(t)
e

+

-

C(z)
ref

W(z)

F(z)

PROCESS

Fig. 3. Structure of the chsppc.

4. ROBUSTNESS ANALYSIS

The study of the robustness of the chsppc is made
using the block diagram of Figure 3. In order to
simplify the notation the polynomial dependence
in z−1 will be omitted in the following. The plant
will be represented by a transfer function P and
unstructured uncertainties will be considered. It
will be assumed from now on that the behavior
of the process is described by a family of linear
models. Thus, the real plant P will be in a vicinity
of the nominal plant Pn, that is: P = Pn(1+ δP ).
If d is the dead-time of the plant it is possible
to write, in a discrete representation: P = Gz−d

and for the nominal case Pn = Gnz−dn . Thus G
represents the plant without the dead-time and
Gn is its nominal value.

The tuning of the chsppc, originating the cascade
controller C and the reference filter W in Figure 3,
is made in order to obtain nominal closed loop sta-
bility and also to attempt a desired set-point nom-
inal performance. The norm-bound uncertainty
region for δP is computed in order to maintain
closed-loop stability (Morari and Zafiriou, 1989).
The uncertainty norm-boundary is defined by the
following expression:

| δP (ejω) |≤ Rb(ω) =
| 1 + C(ejω)Gn(ejω) |
| C(ejω)Gn(ejω)F (ejω) |

∀ω ∈ (0, π)
(18)



The last expression shows that the robust stability
boundary (Rb(w)) is no dead-time dependent,
that is the tuning of the robustness properties of
the controller could be done independently of the
value of the nominal dead-time.

As can be seen, the filter F can be used to im-
prove the robustness of the system at the de-
sired frequency region. As the disturbance rejec-
tion performance of the system is affected by the
use of the filter, its tuning must be done for a
compromise between robustness and disturbance
rejection. For a good disturbance rejection per-
formance | u(w)/q(w) | must be close to one for
ω < ω0, where ω0 defines the desired bandwidth
of the closed-loop.

As Rb(w) = 1
|u(w)/q(w)| the higher disturbance

rejection performance gives lower robustness.

As, in general, the model uncertainties are dom-
inant at high frequencies, F must be chosen in
order to increase the value of Rb(w) at those
frequencies, but maintaining the unitary gain of
u(w)/q(w) for the frequencies above ω0. Thus, F
is a low pass filter with the steady-state condition
F (1) = 1. Note that the compromise between
robustness and disturbance rejection does not al-
low to attempt an arbitrary set of closed loop
specifications.

These properties of the chsppc suggest the follow-
ing two-step procedure for tuning the controller:

• choose the controller parameters N , ψ and
λ in order to obtain nominal stability and
also a desired set-point performance for the
nominal plant.

• estimate the uncertainties of the plant and
compute the norm bound uncertainty using
F = 1, Gn and the cascade controller C
shown in Figure 3.

• compute the filter F in order to obtain robust
stability and the higher bandwidth for the
disturbance rejection performance.

This procedure uses the advantages of the spgpc
and crhpc and cope with the draw backs of both
the algorithms. It must be noted that the original
crhpc algorithm does not allow, at least using
a simple procedure, to introduce a filter in the
predictor structure in order to improve the robust-
ness. On the other hand, the original spgpc does
not allow to obtain nominal stability of the closed
loop. Therefore the proposed algorithm presents
some advantages if compared to the previous con-
trollers.

5. SIMULATION RESULTS

To illustrate the properties of the proposed
chsppc, and to compare it with the crhpc, some
simulation examples are presented.

Example 1 : The real process is represented by:

P (s) =
e−5s

(s + 1)(0.5s + 1)(0.2s + 1)(0.1s + 1)
(19)

For the predictor model of the controller a simple
second order model is used:

P (z) =
0.15z + 0.09

z2 − 0.97z + 0.22
z−10

To obtain nominal closed loop stability and a
step following with small overshoot the tuning
is defined by N = 10, M = 3, λ = 25 and a
sampling time T = 0.5s. The closed loop behavior
of both control systems, is shown in Fig. 4. The
nominal performance is observed from t = 0 to
t = 100 where a step change in the set point
is introduced in t = 0 and in t = 25. Also
a 50% step disturbance is added at the input
and at the output of the plant in t = 50s and
t = 90s respectively. To test the robustness a
20% dead time estimator error is introduced at
t = 105s and a new change in the set point is
applied at t = 110s. As can be observed, both
systems have the same behavior for step tracking
and disturbance rejection in the nominal case, but
when dead time estimation error are considered
only the chsppc has a stable closed loop response.
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Fig. 4. Example 1.

Example 2 : To illustrate the advantages of the use
of the robustness filter in the proposed controller
the following case is analyzed (Clarke and Scat-
tolini, 1991):

(1− 1.5q−1 + 0.7q−2)y(t) = (−q−1 + 2q−2)u(t− 4) (20)

Note that this model has a zero outside the
unitary circle and also a dead-time. As in the
previous example, to obtain nominal closed loop
stability and a step following with small overshoot
the tuning is defined by N = 8, M = 3, λ = 10.

The nominal performance of the crhpc and
chsppc is compared using the same set point as



in example 1 from t = 0 to t = 125. Also a
5% step disturbance is added at the input of the
plant in t = 50s and a 10% step disturbance is
added at the output of the plant in t = 90s. Until
t = 100s the nominal model is used and from
t = 100s to the end 25% dead time uncertain-
ties are considered (1 sample). In this situation
and with the tuned parameters both closed loop
systems became unstable (the simulations of this
case are not shown). Thus maintaining the same
tuning parameters the robustness of the chsppc
is increased using the filter F (z) = 0.15z

z−0.85 . The
same simulation test is repeated as can be seen
in Figure 5. From t = 0s to t = 100s the same
results are obtained but from t = 100s to t = 125s
only the proposed controller stabilizes the closed
loop system. This tuning procedure can be also
done on-line in practice, as the filter has only one
tuning parameter that can be easily set.
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Fig. 5. Example 2.

6. CONCLUSIONS

This paper has shown how to improve the ro-
bustness of a constrained horizon predictive con-
troller maintaining the nominal closed loop sta-
bility properties when controlling dead-time sys-
tems. The proposed controller, based on a differ-
ent predictor structure, allows to obtain a good
compromise between robustness and performance
and uses very simple tuning procedure. Compar-
ative simulation results showed the advantages of
the proposed algorithm.
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