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Abstract: Most of industrial processes are a combination of continuous and discrete
dynamics known as hybrid systems. Markov jump linear systems (MJLS) as a
special class of this family are characterized by their switching from a mode to
another. It is desirable that such systems be reliable and that their running be the
most efficient and safe possible. Thus, the monitoring of MJLS is an interesting
area to explore. This paper addresses the fault detection and isolation issue for
markovian jump linear systems. Using an H∞ filtering approach we take the fault
estimate as being the residual. This generated residual is then evaluated to fault
occurrence. Copyright c©2005 IFAC.
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1. INTRODUCTION

Most of processes in nuclear, automotive, man-
ufacturing, production engineering and agri-food
industry are hybrid systems (Mahmoud, 2001). A
particular class of this family is the Markov jump
linear systems (MJLS) that can be defined as con-
tinuous time systems switching from a linear mode
to another according to a finite state Markov
chain. Thus, when in a given mode, the system
evolves exactly like a linear deterministic one.
Many researchers from the mathematic commu-
nity and more recently from control community
have tackled such systems. For instance, the main
aspects explored by Boukas (Boukas, 2005) and
references therein for MJLS are stochastic stabil-
ity, stochastic stabilizability, H∞ control problem
and filtering problem.

An interesting concept we will consider in this
paper for the MJL (Markov Jump Linear) systems
is the fault detection and isolation one. Indeed, the

issue of reliability, operating safety and environ-
mental protection in industrial processes is a cru-
cial one. Consequently, providing the system with
the ability to detect and locate the occurrence of a
fault in running modes is the corner stone of FDI
(Fault Detection and Isolation) procedure.

Many methods exist in the literature and range
principally in two classes: those that are not
based on a mathematical model of the plant and
those that are model based. For the last ones
and depending on the system under study, we
can find for deterministic processes: parity checks
or analytical redundancy methods (Campa et al.,
2002), (Chow and Willsky, 2002), (Niemann et al.,
1995), (Staroswiecki and Comtet-Varga, 2001),
detection filters (Bokor and Balas, 2004) and fault
observers procedures (Hammouri et al., 1999),
(Shen and Hsu, 1998), (Tan and Edwards, 2003),
mainly stochastic systems use statistical tests
based on likelihood ratio (Basseville, 1998) and
(Keller et al., 1995).



As cited in the literature, some authors repre-
sented abrupt changes due to faults by random
jumps (Tze-Thong and Milton, 1976), (Willsky
and Jones, 1976). More recently, (Mahmoud,
2001) described active fault tolerant control sys-
tems by stochastic linear differential equation
with randomly varying parameters. This variation
due to faults has markovian transition character-
istics.

The Fault Detection and Isolation problem for
this class of systems has never been tackled. Thus,
the main contribution of this paper is to employ
the H∞ approach to filter the fault vector in
MJL systems. The resulting estimate is taken as
a residual that is robust to perturbations and
sensitive to faults. The obtained filter existence
and stability conditions are expressed in LMI
form.

The paper is organized as follows. The second
section states the problem we want to investigate.
The third section details the main results of the
fault detection and isolation in markovian jump
linear systems. In the forth section a numerical
example is given to strengthen the theoretical
concepts.

2. PROBLEM STATEMENT

Many authors have been interested in the appli-
cation of H∞ filtering approach to the detection
and isolation of faults in the deterministic setting
(Besançon, 2003), (Edelmayer and Bokor, 2002),
(Markos et al., 2004). In fact, considering the fault
as an unknown entry of finite energy, detecting
and locating it is equivalent to make the residual
more sensitive to it than to other entries. One way
to realize this is to estimate the fault vector using
H∞ theory and then to consider the estimate as
the residual. Thus, the purpose is to minimize
the H∞ norm of the error between the fault and
its estimate. Conditions to achieve this filtering
objective for MJL systems are characterized via
linear matrix inequalities (LMI).

Let us consider a stochastic system that switches
between different modes N according to a contin-
uous Markov process {s(t), t ≥ 0} taking values in
the finite state space S = {1, 2, ..., N} and having
an infinitesimal generator:

∆ = (λij), i, j ∈ S

with : λij ≥ 0,∀j 6= i, λii = −∑
j 6=i λij .

The dynamics of this system is supposed to be
described by the following model:

{
ẋ(t) = A(s(t))x(t) + B(s(t))w̃(t),
y(t) = Cy(s(t))x(t) + Br(s(t))w̃(t). (1)

x(t) is the state variable of the system at time
t, w̃(t) =

[
fT (t) wT (t)

]T
is the generalized

disturbance at time t, f(t) is the fault vector at
time t, w(t) is the perturbation at time t, both
are supposed to be of finite energy, A(i), D(i),
F(i), Fy(i), Dy(i), Cy(i) are known matrices for
each mode i in S.

B(i) =
[
F(i) D(i)

]

Br(i) =
[
Dy(i) Fy(i)

]

A fault can occur at any time, resulting in system
dysfunctionning. The main purpose is to detect
and locate the fault as early as possible. To do so,
we would have to deal with two issues:

• Residual generation: the fault vector esti-
mation error e(t) = r(t) − f(t) should be
minimized such as:

supw̃∈L2

‖e(t)‖2
‖w̃(t)‖2

< γ

where: the fault vector estimate r(t) is the
residual, ‖v(t)‖2 =

∫∞
0

(v)T (t)(v)(t)dt and
γ a positive constant. This is equivalent to
minimizing the H∞ norm of the influence of
the generalized disturbance on the estimation
error.

• Residual evaluation: the fault detection and
isolation is accomplished by comparing the
generated residual to a threshold Jth to see
whether a fault has occurred or not. Jth

denotes the minimum tolerable fault beyond
which an alarm signal is set off.

3. MAIN RESULTS

In this section we will present the procedure for
H∞ based fault detection and isolation. As the
fault is considered as an unknown input of the
system, an inverse filtering procedure (Saberi et
al., 1999) is adopted to generate the residual.
Then, we express the H∞ filtering performance
in LMI form.

3.1 Residual generator

{
ẋf (t) = K(s(t))xf (t) + L(s(t))y(t),
r(t) = M(s(t))xf (t) + N(s(t))y(t) (2)

r(t) is the fault vector estimate at time t, xf (t) is
the state variable of the filter at time t, y(t) is
the output variable at time t, K(s(t)), L(s(t)),
M(s(t)) and N(s(t)) are the design parameters
of the filter.



Considering the fault estimation error:

e(t) = r(t)− f(t)

and setting :

x̃(t) =
[

x(t)
x(t)− xf (t)

]

After some algebraic developments we get the
following extended model:

{ ˙̃x(t) = Ã(s(t))x̃(t) + G̃(s(t))w̃(t)
e(t) = C̃(s(t))x̃(t) + G̃r(s(t))w̃(t)

Ã(i) =
[

A(i) 0
A(i)− L(i)Cy(i)−K(i) K(i)

]

C̃(i) =
[

F(i) D(i)
F(i)− L(i)Fy(i) D(i)− L(i)Dy(i)

]

G̃(i) =
[
M(i) + N(i)Cy(i) −M(i)

]

G̃r(i) =
[
N(i)Fy(i)− I N(i)Dy(i)

]

i being the value of the mode s(t).

3.2 H∞ filtering approach

The aim is to minimize the effect of the pertur-
bation w̃(t) on the estimation error of the fault
vector. To do so, existence and stability conditions
of such a filter are set in the following theorem:

Theorem 1:
Let γ be a positive constant and R a given sym-
metric and positive-definite matrix representing
the weight of initial conditions. If there exists a
set of symmetric and positive-definite matrices
P = (P(1), ...,P(N)) such that ∀i ∈ S:




J̃1(i) P(i)G̃(i) C̃T (i)
G̃T (i)P(i) −γ2I G̃T

r (i)
C̃(i) G̃r(i) −I


 < 0 (3)

and:
[
I I

]
P(i0)

[
I
I

]
≤ γ2R

where: J̃1(i) = ÃT (i)P(i)+P(i)Ã(i)+
∑N

j=1 λijP(j)
then the extended system is stochastically stable
and the estimation error satisfies:

‖e‖22 ≤ γ2[‖w̃‖22 + xT (0)Rx(0)]

To reach conditions for the design of the pa-
rameters of the filter we rearrange the LMI (3)
considering that:

P(i) =
[
X1(i) 0

0 X2(i)

]

Y(i) = X2(i)L(i)

Z(i) = X2(i)K(i)

this leads to the following LMI:




Γ0(i) ΓT
1 (i) Γ2(i) Γ3(i) ΓT

4 (i)
Γ1(i) Γ5(i) Γ6(i) Γ7(i) −MT (i)
ΓT

2 (i) ΓT
6 (i) −γ2I 0 ΓT

8 (i)
ΓT

3 (i) ΓT
7 (i) 0 −γ2I ΓT

9 (i)
Γ4(i) −M(i) Γ8(i) Γ9(i) −I




< 0 (4)

where:

Γ0(i) = AT (i)X1(i) + X1(i)A(i) +
N∑

j=1

λijX1(j)

Γ1(i) = X2(i)A(i)−Y(i)Cy(i)− Z(i)

Γ2(i) = X1(i)F(i),Γ3(i) = X1(i)D(i)

Γ4(i) = M(i) + N(i)Cy(i)

Γ5(i) = ZT (i) + Z(i) +
N∑

j=1

λijX2(j)

Γ6(i) = X2(i)F(i)−Y(i)Fy(i)

Γ7(i) = X2(i)D(i)−Y(i)Dy(i)

Γ8(i) = N(i)Fy(i)− I,Γ9(i) = N(i)Dy(i)

The design of the filter parameters is summarized
in the following theorem.

Theorem 2:
Let γ be a positive constant and R a given sym-
metric and positive-definite matrix representing
the weight of initial conditions. If there exist sets
of symmetric and positive-definite matrices: X1 =
(X1(1), ...,X1(N)), X2 = (X2(1), ...,X2(N)) and
a set of matrices Y = (Y(1), ...,Y(N)) satisfying
the LMI (4) for all i ∈ S,

and X1(i0) + X2(i0) < γ2R

then, there exists a filter (or observer) in the
form of (2) such that the estimation error is
stochastically stable and bounded as:

‖e‖22 ≤ γ2[‖w̃‖22 − xT (0)Rx(0)]

and the filter gains are given by:

{
L(i) = X−1

2 (i)Y(i),
K(i) = X−1

2 (i)Z(i).

M(i) and N(i) are obtained straightforward from
the LMI resolution.

3.3 Residual evaluation

Most of the time, the residual evaluation is done
via the definition of a detection threshold. To



determine this threshold, we solve the dynamical
unfaulty system equation. When, dealing with a
single fault the threshold should satisfy:

Jth = E(supd,f=0‖r(t)‖T )

if initial conditions and perturbation are zero:
r(t) = 0, which leads to: Jth = 0.

The fault detection is then realized during the
faulty conditions over the time interval T :

• if ‖r(t)‖T > Jth then a fault has occurred
• Otherwise no fault is detected

with: ‖r(t)‖T = [E
∫ t2

t1
rT (t)r(t)dt]1/2

4. NUMERICAL EXAMPLE

To show the effectiveness of the developed results
let us consider a two-mode system with the fol-
lowing data:

∆ =
[−0.3 0.3

0.5 −0.5

]

A(1) =
[

0 1
−1 −1

]
,A(2) =




0 0.8

−1 −1


 .

F(1) = F(2) =
[

0
1.5

]

D(1) = D(2) =
[
0.1 0.2

]

Fy(1) = Fy(2) = 1

Cy(1) = Cy(2) =
[
3 3

]

Dy(1) = Dy(2) = 0.05

Letting γ = 0.2382 and solving the LMI (4), we
get the following gains:

M(1) =
[−2.3802 −2.2400

]

M(2) =
[−2.3764 −2.2118

]

N(1) = 0.8041,N(2) = 0.8024

L(1) =
[−0.1400

1.2809

]
,L(2) =

[−0.1184
1.2566

]

K(1) =
[

0.4452 1.5674
−4.7824 −4.6358

]

K(2) =
[

0.3770 1.2971
−4.7022 −4.5126

]

To show the validness of the obtained results, let
us simulate this system with the designed filter.
For this purpose, we suppose that the system
switches from mode 1 to mode 2 at t = 40. A single
fault occurs at t = 7 in mode 1 and continues
during mode 2 with a constant magnitude of 2
(Fig. 1).
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Fig. 1. Single fault detection (fault vs time)

A perturbation is induced in both modes such
as w1(t) = w2(t) = 1. The objective is to see
if the detection algorithm can assess the fault
occurrence. At each time, we compute the residual
norm and compare it to a threshold during a
detection time interval T that is taken as T = 5
periods of time for both modes.

Thus, using the previous detection procedure, the
detection results are displayed as:
A fault occurs during mode 1 at t = 7
A fault occurs during mode 2 at t = 40

The algorithm is able to detect the occurrence of
the fault at t = 7 in mode 1 and its continuity
during the switching to mode 2. The fault esti-
mate evolution for the two modes is such that:
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Fig. 2. Single fault detection (fault estimate vs
time)



As shown on the curve, the fault is well estimated.
Its detection at the exact time that it happens
and its continuity during the mode switching are
evident.

5. CONCLUSION

In this paper the application of H∞ approach to
the markovian jump linear systems was addressed.
The conditions for fault vector estimator design
were set in LMI form. The vector fault estimate
is very close to the real one. Taking it as the
residual, filtred fault vector is evaluated to detect
its occurrence. The obtained results for the case
of a single fault detection show that it is detected
at the exact time it occurs.
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