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Abstract: This paper proposes a novel approach for the reduction of the 
dimensionality of non-linear data based on radial basis function (RBF) network and 
polygonal line (PL). A method is suggested to find out the optimum number of nodes 
in the hidden layer which is mostly heuristic in case of other proposed methods. A 
hybrid optimization technique based on genetic algorithm (GA) and Broyden, 
Fletcher, Goldfarb, and Shanno (BFGS) Quasi-Newton algorithm is used for faster 
and effective training of the network. Kernel density estimation is used for finding 
the confidence limits. The method is applied for detecting the fault in a simulated 
continuous stirred-tank reactor (CSTR). The result shows that the proposed method 
is excellent for process monitoring in non-linear systems. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

The advent of faster and more reliable computer 
systems has revolutionized the manner in which 
industrial processes are monitored and controlled. 
Once thought of as just data logging and storage 
units, these computer systems now perform 
sophisticated computer-based control strategies, and 
real-time simulation and optimisation. These 
advances have resulted in the generation of a large 
amount of process data, yet the task of interpreting 
and analysing this data is daunting. The most used 
method for the data reduction is principal component 
analysis (PCA). The major drawback of this method 
is that it assumes the linear correlation between the 
data which is not always true in case of process data 
which are generally nonlinearly correlated. Many 
methodologies have been proposed for nonlinear 
principal component analysis (NLPCA). Kramer 
(1991) proposed a NLPCA based on five layer auto 
associative neural networks. The bottleneck layer 
which is smaller compared to input and output layer 
is forced to develop a compact representation of the 
input data. Since the number of layers is five, it is 
difficult to train the network. Also, it is difficult to 
determine the number of nodes in hidden layers and 
the bottleneck layer which is more troublesome in 

case of large number of variables. Dong and McAvoy 
(1996) proposed NLPCA based on principal curves 
and neural networks. The principal curves method 
suggested by Hastie and Stuetzle (1989) was used to 
calculate the associated score and corrected data 
point for each original data point. But, since principal 
curve method does not produce a nonlinear principal 
component in the sense of principal loading, Dong 
and McAvoy (1996) developed an alternative 
approach based on multi layer perceptron to model 
the calculated data.  
 
Most of the principal curve methods (Hastie and 
Stuetzle, 1989; Kegl, et al., 2000) consist of a 
combination of ‘local models’ that are related by a 
fixed topology. It is suggested that these methods 
exhibit poor performance when the data are 
concentrated around a highly curve or self 
intersection curve (Verbeek, et al., 2002). This is due 
to the fixed topology among the local models and due 
to bad initialization. Also, the number of local 
models is not known a priori and an (educated) guess 
is required for the number of local models (Verbeek, 
et al., 2002).  
 
On the other hand, RBF network has significant 
advantage over multilayer perceptron like, faster 



convergence, smaller extrapolation errors, higher 
reliability and a more developed theoretical analysis. 
An RBF network performs a non-linear 
transformation from d-dimensional input space to k-
dimensional output space which is the basic 
requirement of the NLPCA.  
 
In this work, a model is developed based on RBF 
network and PL. The k-segment algorithm proposed 
by Verbeek, et al. (2002) for finding the principal 
curve is used for fitting the PL. The whole 
methodology can be divided into two parts. Firstly, 
the data is fitted to PL, and associated scores and 
corrected value is found for each data point. Suitable 
number of non linear principal component is selected 
based on explained variance. The number of data 
groups is found out based on the number of segment 
required to fit the polygon. In the second part, two 
RBF networks are developed to model the NLPCA 
based on the output of the previous. The data is 
projected to a lower dimension feature space by one 
network whereas the second network is used for 
reconstruction to the input space.  
 
The remaining part of the paper is organized as 
follows. In Section 2, a brief description of the 
Voronoi Regions (VRs) and PL is given. In Section 
3, the proposed algorithm is discussed, together with 
the presentation of its architecture. In Section 4, two 
simulations are performed to show the model 
capability to reduce the data dimensionality and for 
fault detection. Finally, in Section 5 the paper is 
concluded with a summary of the features of the 
proposed algorithm and giving the directions for 
future work on this topic. 
 
 

2. VORONOI REGIONS AND POLYGONAL 
LINE 

 
Let Xn be a dataset of n samples in the Rd with 
samples denoted by x. VRs are regions whose vectors 
are given by  
 

Vi = { x: d(x, yi) ≤ d(x, yj) for all j∈J } (1) 
 

where d(x, yi) is a distortion measure on the 
input/output vector space and J is the index set.  
A line s can be defined as: 
 

s = { s (t) | t∈R }, where s(t) = c + ut (2) 
 
The distortion measure can be represented as the 
distance of a point x to a line s, i.e. 
 

d(x, s) = inf || s(t) – x||   (3) 
R  t∈

 
Therefore, the VRs  V1, V2, …, Vp can be defined as  
 

Vi = {x∈Xn
 | i =  d(x, sarg min

j
j)}  (4) 

i.e. Vi contains all the datapoints for which the ith 
line is the closest. The first step in finding the PL is 
to find k-lines s1, s2, …, sk that minimizes the total 
squared distance of all points to their closest lines:  
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To find lines that are local optima of (5), k-lines with 
random orientation and locations are introduced. The 
VRs are determined and the lines are replaced by the 
shortest segment of its first principal component (PC) 
of their VR such that all orthogonal projection to the 
first PC of the points in the VR are included in the 
segment.  
 
Sometimes due to the local minima of (5), the poor 
performance of the algorithm is observed. It is 
avoided by using the segments of the first PC that are 
cut off at 3σ/2 from the centroid of the VR, where σ2 
is the variance along the first PC. It is checked 
whether (5) is decreased or not. If not, the segment 
that includes all projections to the first PC is used to 
obtain the guaranteed decrease of (5). These steps are 
repeated till the convergence.  
 
Since the optimum number of segments is not known 
in advance to model the data, an incremental strategy 
is used. The number of segments are increased and 
optimised till some performance criterion is met. 
 
For determining the position of point where to insert 
the new segment, the decrease in (5) is computed if a 
zero length segment is placed on xi for each x  in the 
data set. The new segment is inserted along the first 
PC of that VR. After the insertion the previous steps 
are followed for the optimization.   

i

 
The next step is to link the segments together to form 
a PL.  This goal is achieved through the graph theory 
concept. Let G = (V, E) is a fully connected graph, 
where the set of vertices V consists of the 2k end-
points of the k-segments. A set of edges A E which 
contains all the edges that corresponds to the 
segments is defined. A sequence of edges {(v

⊂

0, v1), 
(v1, v2),… (vm-1, vm)} in which all edges are distinct is 
called a ‘path’. A path is open if v0 ≠ vm. An open 
path that passes through every vertex in the graph 
exactly once is called a ‘Hamiltonian path’ (HP). The 
cost of a path P is represented as: 
 

l(P) + λa(P),    (6) 
 
with 0 ≤ λ ∈R being a parameter to be set by the 
user. The term l(P) denotes the length of the edges in 
P. The length of an edge e = (vi, vj) is taken as the 
Euclidean distance between its vertices:  
 

l(e) = || vi -  vj||,    (7) 



The second term a(P) is a penalty term equal to sum 
of the angles between the adjacent edges. The 
parameter λ controls the trade-off between preferring 
short paths and paths that do not contain sharp edges. 
The smaller λ, the smaller is the preference for the 
smooth curve. The optimum path P will be that HP 
for which the total cost of the path is minimum. An 
initial PL is constructed using the greedy strategy.  
 
Using the incremental method described above, a 
sequence of PL with increasing number of segments 
are obtained. The objective is to find that PL which 
maximizes the log-likelihood of the data.    
 
Consider a PL of length l as a continuous arc length 
parameterized one dimensional latent variable t 
embedded in Rd, where the embedding is given by f: 
[0, l] R→ d. A uniform distribution p(t) = 1/l is 
assumed on t for t ∈  [0,l]. Furthermore, let p(x|t) is a 
spherical Gaussian distribution with mean point t on 
the PL and covariance matrix σ2I, where I is the dxd 
identity matrix. For a latent variable distributed 
uniformly over a line segment s of length l ≥ σ, the 
negative log-likelihood for a point x can be roughly 
approximated by 
 

,   (8) c  )2(2σ / 2)d(s,  l log ++ x
 
where c is a constant dependent on σ. The effect of 
higher density occurring at one side of the PL at 
places where different non-parallel segments are 
connected is neglected. Hence, the total log-
likelihood of the data is approximated as 
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where l is the total length of the PL. The different 
stopping criterion could be used to keep inserting 
segments until the objective function (9) reaches its 
first minimum or some limit kmax on k is reached. 
 
 

3. THE PROPOSED METHODOLOGY 
 

3.1 Dimensionality Reduction and reconstruction 
 
The data is fitted to a PL using the method discussed 
in section 2. This PL gives a generalization of the 
first linear principal component. Every data points 
are projected orthogonally onto the PL. Thus for 
every datapoints there are corresponding lengths t1, 
t2, …, tn along the curve where n is the number of 
data points in d-dimensional space (Fig. 1). In 
analogy to LPCA, this length represents the non 
linear scores of the data points. Thus the sample 
vector can be represented as 
  
X = f1 (t(X)) +  E1   (10) 
 

where t is the non linear principal component score 
and E1 is the residual vector. 
 

 
Fig. 1. Projection of the data point on the
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If the dataset is divided into p groups, the 
architecture of the network will be d-p-k RBF 
network as shown in fig. 2. 
 

 
 
Fig. 2. Architecture of the RBFN for dimensionality 

reduction (Reduction RBFN). 
 
 The Gaussian RBF with equal spread in all the 
direction is defined as: 
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where || x – c || is the Euclidean distance of x = (x1, 
x2, …, xd) from the vector center c = (c1, c2… cd). 
When the spread of the data points is not uniform, an 
elliptical Gaussian RBF takes the form 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ

−
++

σ

−
−=ϕ

2

2
dd

2

2
11

 2

)c x

 2

)c x
 exp  ) , ;( 

d1

(
...

(
σcx

         (12) 
 
To ensure the optimum receptive field of each of the 
neuron in the hidden layer, a heuristic approach of 
using a spread of 3σ/2 is considered, where σ is the 
standard deviation of the dataset in the group. If W = 
(wi1, wi2,…, wik) for i = 1, 2,…, p is the weight matrix 
of the output layer, the output of the network is 
defined as 
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Hence, the objective function to be minimized for the 
training of the network is  
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Since only the weights of the nodes in the output 
layer are unknown in this case, i.e. c and σ are 
known, the training of this network is extremely 
faster compared to the multi layer perceptron. A 
hybrid training algorithm is used to train the network. 
In this algorithm, first the global minimum is found 
using GA. GA can reach the region near an optimum 
point relatively quickly, but it can take many function 
evaluations to achieve convergence. Therefore, GA is 
run for a small number of generations to get near an 
optimum point. The solution of GA is used by BFGS 
Quasi-Newton algorithm for more efficient local 
search.  
 
Another network is required to reconstruct the data 
from the reduced dimension to the original dimension 
of the sample space (Reconstruction RBF network). 
In this work also, the mirror image of the first 
network is taken as suggested by many researchers 
(Kramer, 1991; Dong and McAvoy, 1996).  These 
two networks combined together is called self 
mapping neural network. 
 
3.2 Fault detection and Identification 
 
The data of each group is mapped to the lower 
dimensional space. The centre and standard deviation 
of each group is found to get the hidden layer 
parameters. The output layer parameter i.e. the 
weight matrix is trained using the hybrid training 
algorithm for normal dataset. The output of the first 
network is nonlinear principal component scores on 
the reduced dimension and the output of the second 
network is the corrected dataset. The network is 
trained for the normal dataset. The parameter which 
is observed for fault detection is squared predicted 
error (SPE). It is defined as 
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In fault detection, the departure of the process from 
its normal behaviour needs to be detected. In most of 
the cases, these decisions are based on the confidence 
limits. These confidence limits are mainly defined 
based on two types of approach: parametric 
approaches and non parametric approaches. In the 
first case, it is assumed that the data belongs to a 
known distribution, which is not adequate to 
approximate the non linear processes. In the second 
approach, the density function is estimated using an 
unstructured approach. In this work, the non 
parametric approach is adopted based on kernel 
density estimation (Martin and Morris, 1996).  
Kernel estimator with kernel K is defined by: 
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where h is the window width, also called the 
smoothing parameter or bandwidth. The quality of a 
density estimate is mainly determined by the 
smoothing parameter. The shape of the bumps is 
determined by the kernel K but it has minor effect on 
the quality of the density estimate. The smoothing 
parameter is selected by least square cross validation 
(Bowman, 1984). The normal density is considered 
for the kernel.  
The identification of the faulty sensor is done on the 
basis of their contribution to the total error of self 
mapping neural network. The contribution to the total 
error by sensor j can be expressed as  
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The contribution by the sensor j can be defined as 
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4. CASE STUDY 
 
4.1 Non Linear Equations  
 
Consider a system with three variables but only one 
factor (Dong and McAvoy, 1996): 
 

x1 = t1+ e1
x2 = t2-3t + e2

           x3 = -t3+3 t 2 + e3   (19)
 

where e1, e2, e3 are independent noise N (0, 0.01), 
t∈[0.01, 1]. 100 samples are generated using these 
equations. The first nonlinear principal component 
can explain 99.94% of the variance. The whole 
dataset is divided into 9 groups. Therefore the 
structure of the reduction RBF network is 3-9-1, 
whereas for the reconstruction RBF network, it is 1-
9-3. Figure 3(a) shows the comparison between the 
actual and the predicted data points. It can be seen 
that the predicted data has an excellent match with 
the actual datapoints. For checking the detection 
capability of the methodology, another set of 100 
samples are generated by making small changes in 
x3. This system can be assumed as the faulty 
condition in the system. 

 
x1 = t1+ e1

x2 = t2-3t + e2
                     x3 =-1.1 t3+3.2 t 2 + e3  (20)

 
Fig. 3 (b) shows the SPE of the model. It can be seen 
that as soon as the fault data is introduced (at 
observation 100), SPE increases drastically. It shows 
that the model is capable of detecting even the small 
fault into the system. 
 

(a) 
 

 
 
(b) 
 

 

Solid line – 99 % control limit 
Dashed line – 95 % control limit 

 
Fig. 3. (a) Comparison between the actual (o) and the 

predicted (*) values. (b) Square Predicted Error 
(SPE) using the model. 

 
4.2 CSTR Case Study 
 
To show the model capability for detecting fault in 
industrial system, a simple CSTR system ((Luyben, 
1973) is considered. An irreversible exothermic 
reaction converting reactant A into product B takes 
place inside the reactor. Nine variables (inputs: Fin 
(volume flow rate), Tin (temperature), Cain 
(concentration of component A), Fcin (volume flow 
rate of incoming cooling stream) and F (volume flow 
rate of output stream); outputs: F (volume flow rate), 
T (temperature), Ca (concentration of A), V (volume 
of content of reaction vessel), and Tc,out 
(temperature of outgoing cooling stream) are 
considered for this study. The noise S(0, 5% of actual 
value) is introduced in each input to make it more 
realistic. The simulink of MATLAB is used to 
develop the CSTR model.  100 data points at 5 
seconds interval for the normal condition is 
generated. Two faults are introduced into the system. 
In the first case, the value of Fin is increased by 20% 
of its actual value (process upset) whereas in the 
second case, a random number of amplitude 20% of 
actual value of Fin is introduced (sensor failure). 100 
data points at 5 seconds interval for each of these 
cases are generated.  
 
The explained variance by the first non linear 
principal component is 98.83% whereas four linear 



principal components can only explain 96.34% 
variance. Fig. 4(a) and 4(b) shows the SPE of the 
normal and faulty conditions for both of these cases 
respectively. It can be seen that in both the cases, the 
proposed model is able to detect the fault the time it 
is introduced. Since in both the cases the SPE in the 
faulty condition is much more higher compared to 
the normal condition it is easy to detect the fault. 
 
 (a) 

 
(b) 

 
Fig. 4. The SPE using one non linear principal 

component (a) Process upset (b) Sensor failure. 
 
 

 
 
Fig. 5. Contribution plot at the instance when fault 

was introduced in the system. 
 
Fig. 5 shows the contribution plot at the instant, when 
the fault was introduced into the system and it clearly 
indicates that sensor 1 i.e. the volume flow rate meter 
is the faulty sensor. 
 

An integrated approach of this methodology with the 
pattern recognition techniques like self organizing 
map, learning vector quantization etc. can be used to 
isolate the process upset from the sensor failure. This 
will be a part of future work. 
 
 

5. CONCLUSION AND FUTURE WORK 
 

In this work, a network is proposed to model the 
large dataset into a lower dimension. Also, a scheme 
to decide the number of nodes in hidden layer and 
output layer is explained. Since, RBF network is a 
robust network for function approximation, it is 
vastly used for feature extraction, pattern recognition 
and time series predictions. Therefore, the proposed 
methodology can be used for developing a robust 
architecture of the network which will be more 
efficient and theoretically explained. Also, a hybrid 
scheme for faster and accurate training of this type of 
network is used. The application of the proposed 
methodology is shown for fault detection and 
identification. This work will be the part of an 
integrated framework for total process control and 
supervision. 

Solid line – 99 % control limit 
Dashed line – 95 % control limit 

Solid line – 99 % control limit 
Dashed line – 95 % control limit  
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