
A FORMULATION OF NONLINEAR MODEL
PREDICTIVE CONTROL USING AUTOMATIC

DIFFERENTIATION

Yi Cao ∗,1

∗ School of Engineering, Cranfield University, UK

Abstract: The computational burden, which obstacles Nonlinear Model Predictive
Control techniques to be widely adopted, is mainly associated with the requirement
to solve a set of nonlinear differentiation equations and a nonlinear dynamic
optimisation problem in real-time online. In this work, an efficient algorithm has
been developed to alleviate the computational burden. The new approach uses the
automatic differentiation techniques to solve the set of nonlinear differentiation
equations, at the same time to produce the differential sensitivity of the solution
against input variables. Using the differential sensitivity, the gradient of the cost
function against control moves is accurately obtained so that the online nonlinear
dynamic optimisation can be efficiently solved. The new algorithm has been applied
to an evaporation process with satisfactory results to cope with setpoint changes,
unmeasured disturbances and process-model mismatches. Copyright c©2005 IFAC.

Keywords: Nonlinear Control Systems, Predictive Control, Optimal Control.

1. INTRODUCTION

In last two decades, linear model predictive con-
trol has been well recognised by industry due to
its intuitiveness and capability to handle multi-
variable constraints. However, the extension to
nonlinear model based predictive control (NMPC)
has not been so successful although a significant
amount of research effort has been put into this
area. The main obstacles, which block NMPC
techniques to become widely adoptable is the com-
putational burden associated with the require-
ment to online solve a set of nonlinear differential
equations and a nonlinear dynamic optimisation
problem in real-time.

The objective of NMPC is to determine a set of
future control moves (control horizon) in order
to minimise a cost function based on a desired
output trajectory over a prediction horizon. The

1 Email: y.cao@cranfield.ac.uk

introduction of nonlinear models inside the con-
trol algorithm does not cause major problems
from a theoretical point of view. However, the
computation involved to solving the optimisation
problem at every sampling time can become so
intensive, particularly for high-dimensional sys-
tems, that it could make on-line applications al-
most impossible (Sistu et al., 1993). There exist
a number of strategies for tracking the optimal
control problem through nonlinear programming
(NLP)(Binder et al., 2001): successive lineariza-
tion, direct single and multiple shooting methods,
and others. In a successive linearization solution,
the Jacobian linearization is performed over the
prediction horizon or at a number of time steps in
the prediction horizon (Ricker and Lee, 1995). Al-
ternatively, the differential equations can be trans-
formed into algebraic equations which are treated
as nonlinear equality constraints and solved si-
multaneously with the NLP problem (Biegler et
al., 2002).In a direct single shooting approach,



the nonlinear dynamic optimisation problem is
solved in two sequential stages, where an optimi-
sation routine serves as an outer loop to iteratively
select new sets of manipulated variable moves,
while a differential equation solver is used to in-
tegrate the dynamic equations at each iteration
of optimisation (Binder et al., 2001).Recently, an
approach using differential flatness to solve the
nonlinear dynamic optimisation problem has been
proposed(Mahadevan and Doyle III, 2003).

Modern NLP solvers need gradient information
to perform efficiently and reliably. All approaches
mentioned above requires intensive computation
of derivatives. Traditionally, there are three ways
to calculate sensitivity of a dynamic optimisation
problem (S.Storen and T.Hertzberg, 1999): per-
turbations, sensitivity equations and adjoint equa-
tions. However, none of them are efficient, particu-
larly when the number of parameters is large. Re-
cently, automatic differentiation (AD) techniques
have been applied to solve dynamic optimisation
problems (Röbenack and Vogel, 2004; Griesse and
Walther, 2004). In previous work, Cao and Al-
Seyab (2003) used the AD techniques to approxi-
mate the solution of the sensitivity equations with
efficiency significantly improved. However, only
the algebraic features of AD has been utilised
in the approach. Neither the efficiency nor the
accuracy satisfy the requirement of NMPC.

In this work, the advantages of AD techniques
have been further explored and intensively utilised
to improve the efficiency of NMPC. More specifi-
cally, by calculating Taylor coefficients in forward
mode and their partial derivatives in reverse mode
of AD, the nonlinear differential equations are
solved as a set of algebraic equations, and more
importantly, the differential sensitivities can be
obtained at the same time. Hence, a NMPC prob-
lem can be efficiently solved with any modern
NLP software. An existing AD software pack-
age, ADOL-C (Griewank et al., 1998) has been
adopted with a small modification to implement
the above algorithm.

The paper is organised as follows. After a brief
overview of AD, its principles to solve autonomous
differential equations and to calculate sensitivities
are explained in section 2. Section 3 extends
the techniques for non-autonomous state-space
equations. Then, the formulation of NMPC using
AD is proposed in section 4. A case study is
presented in section 5 to show the usage and
efficiency of the new algorithm. Finally, the paper
is concluded in section 6.

2. AUTOMATIC DIFFERENTIATION

AD is a class of computational techniques for
evaluating derivatives of functions defined in com-

puter programs (Griewank, 2000). It is superior
to other two approaches: symbolic differentiation
and finite difference approximation. To compute
derivatives symbolically using computer algebra
software such as Mathematica or Maple, an enor-
mous expression growth normally occurs due to
a repeated evaluation of common subexpressions.
On the other hand, with finite difference approx-
imation, accuracy of derivatives is restricted be-
cause of cancellation and truncation errors, par-
ticularly, for higher order derivatives. Automatic
differentiation techniques overcome these draw-
backs by systematically applying the chain rule
to functions defined by arbitrary computer pro-
grams. A computer program is equivalent to a
computational graph consisting of a sequence of
elementary operations whose derivatives are well
known. Hence, by numerically applying the chain
rule to these arithmetic sequences, not only can
AD deliver truncation-error free derivatives but it
also avoids code growth.

2.1 Forward and Reverse Modes

There are two computational modes of AD: the
forward mode and the reverse mode. Consider a
function, y = y(v(x)) consisting of two operations:
v = v(x) and y = y(v). In forward mode,
by applying the chain rule, ẏ = dy/dx can be
evaluated in the sequence: ẋ = 1, v̇ = v′(x)ẋ and
ẏ = y′(v)v̇. In forward mode, a function and its
derivatives can be evaluated in parallel.

The reverse mode evaluation is based on the def-
inition of adjoint, v = dy/dv. After evaluating
the sequence, v = v(x) and y = y(v) with all
intermediate results recorded, adjoints are eval-
uated in a reverse sequence: y = 1, v = yy′(v)
and finally, dy/dx = x = vv′(x). Evaluation in re-
verse mode requires more memory than in forward
mode. However, when the number of dependent
variables is much less than the number of inde-
pendent variables, such as the objective function
of an optimisation problem, evaluation in reverse
mode is more efficient than in forward mode. More
details of these two modes can be found elsewhere
(Griewank, 2000).

2.2 Taylor Series

Consider a d-time continuously differentiable func-
tion, f : Rn → Rm. Let x(t) ∈ Rn be given by the
truncated Taylor series:

x(t) = x0 + x1t+ · · ·+ xdt
d (1)

with coefficients xi = (i!)−1(∂ix(t)/∂ti)|t=0 ∈
Rn. Then, the mapped signal, z(t) = f(x(t)) ∈
Rm can be expressed by a Taylor expansion:

z(t) = z0 + z1t+ · · ·+ zdt
d +O(td+1) (2)



where zj = (j!)−1(∂jz(t)/∂tj)|t=0 ∈ Rm. From
the chain rule, zj is uniquely determined by the
coefficient vectors, xi with i ≤ j, i.e.

zj ≡ zj(x0,x1, . . . ,xj) (3)

Nevertheless, functions zj are inherently d-time
continuously differentiable and their derivatives
satisfy the identity (Christianson, 1992):

∂zj

∂xi
=
∂zj−i

∂x0
= Aj−i(x0,x1, . . . ,xj−i) (4)

It has been proven that coefficient function, zj is
linear with respect to the upper half of its j + 1
arguments (Griewank, 2000):

zj(x0, . . . ,xj) = zj(x0, . . . ,xk−1,0, . . . ,0) (5)

+
j∑

i=k

Aj−i(x0, . . . ,xj−i)xi

for j/2 ≤ k ≤ j.

AD techniques provide an efficient way to solve
these coefficient vectors, zj and matrices, Ai

(Griewank, 2000). For example, with the software
package, ADOL-C (Griewank et al., 1998), by us-
ing the forward mode of AD, all Taylor coefficient
vectors for a given degree, d can be calculated
simultaneously, whilst the matrices, Ai can be
obtained by using the reverse mode of AD. The
run time and memory requirement associated with
these calculations grows only quadratically in d.

2.3 Autonomous Differential Equation

Consider an autonomous differential equation,

ẋ(t) = f(x(t)), x(0) = x0 (6)

with d-time continuously differentiable map, f :
Rn → Rn. Equation (6) is a special case of map
z(t) ≡ f(x(t)), where z(t) = ẋ(t). Thus, for a
given initial vector, x0, all Taylor coefficients, xi,
i = 1, . . . , d can be iteratively determined from
(3) and xi+1 = zi/(i + 1). With such a series
expansion up to a certain order d, solution to the
initial value problem (6) can be represented as in
(1) for 0 ≤ t ≤ h with sufficient accuracy. Thus,
AD can be used to efficiently solve initial value
problems (Griewank, 1995).

Moreover, by applying reverse mode of AD, a set
of partial derivative matrices, Aj−i = ∂zj/∂xi

can also be obtained. Then, the total derivatives,
Bk := dxk+1/dx0 ∈ Rn×n are cumulated from
these matrices:

Bk =
1

k + 1
dzk

dx0
=

1
k + 1

k∑
j=0

∂zk

∂xj

dxj

dx0

=
1

k + 1

Ak +
k∑

j=1

Ak−jBj−1

 (7)

Equations (3), (4) and (7) have been efficiently
implemented in AD package ADOL-C (Griewank
et al., 1998).

3. NON-AUTONOMOUS SYSTEMS

The above algorithm is extended to solving dy-
namic sensitivity problems of non-autonomous
state space systems:

ẋ(t) = f(x(t),u(t)), x(0) = x0 (8)
y(t) = g(x(t),u(t)), 0 ≤ t ≤ h

where, u(t) ∈ Rm is control input and y(t) ∈ Rp

the output. Using normalised time, τ = t/h,
the right-hand-side of the state equation becomes
fh(x(τ),u(τ)) = hf(x(τ),u(τ)) = z(τ) and the
solution interval is 0 ≤ τ ≤ 1. Assume u(τ) =
u0+u1τ+· · ·+urτ

r and all its coefficients, uj are
known. Let v =

[
uT

0 · · · uT
r

]T
. Using the forward

mode of AD, the Taylor coefficients of x(τ) and
y(τ) can be iteratively determined from x0 and
u.

xj+1 =
1

j + 1
zj(x0, . . . ,xj ,v) (9)

yj = yj(x0, . . . ,xj ,v) (10)
for j = 1, . . . , d

Then, by applying the reverse mode of AD, the
partial derivatives are obtained and partitioned
as follows:

Aj =
[
Ajx| Ajv

]
:=

[
∂zj

∂x0

∣∣∣∣ ∂zj

∂v

]
(11)

Cj =
[
Cjx| Cjv

]
:=

[
∂yj

∂x0

∣∣∣∣ ∂yj

∂v

]
(12)

The total derivatives are accumulated from these
partial derivatives as follows:

Bk =
[
Bkx | Bkv

]
:=

[
dxk+1

dx0

∣∣∣∣ dxk+1

dv

]

=
1

k + 1

Ak +
k∑

j=1

A(k−j)xBj−1

 (13)

Dk =
[
Dkx | Dkv

]
:=

[
dyk

dx0

∣∣∣∣ dyk

dv

]
=

[
Ckx | 0

]
+

k∑
j=1

C(k−j)xBj−1 (14)

In summary, the solutions of system (8) at t = h
are

x(h) =
d∑

i=0

xi, y(h) =
d∑

i=0

yi (15)

whilst their sensitivities to initial value, x0 and
input coefficients, v are

Bx(h) :=
dx(h)
dx0

=
d∑

i=0

Bix (16)



Bv(h) :=
dx(h)
dv

=
d∑

i=0

Biv (17)

Dx(h) :=
dy(h)
dx0

=
d∑

i=0

Dix (18)

Dv(h) :=
dy(h)
dv

=
d∑

i=0

Div (19)

4. NONLINEAR MODEL PREDICTIVE
CONTROL

For nonlinear system (8), at current sampling
time, t = t0, consider the general optimal control
problem:

min
u
J = ψ(x(tP ),u(tP )) +

∫ tP

t0

ϕ(x(t),u(t))dt

s.t. ξ(x(t),u(t)) ≤ 0 (20)
ζ(x(tP ),u(tP )) ≤ 0

where ξ ∈ Rq and ζ ∈ Rs are trajectory
and terminal constraints, respectively. The pre-
diction horizon [t0, tP ] is divided into P intervals,
t0, t1, . . . , tP with ti+1 = ti + hi and

∑P−1
i=0 hi =

tP − t0. Assume the optimal solution to (20) is
u(t) =

∑r
i=0 ui(tk)(t− tk)i for tk ≤ t ≤ tk+1, k =

0, . . . , P − 1. Then, only the solution in the first
interval is to be implemented and whole procedure
will be repeated at next sampling instance. Note,
combination of the terminal performance index ψ
and the terminal constraints ζ is imposed so that
the minimised performance cost in the receding
sequence decreases monotonously. Hence, closed-
loop stability under such moving horizon control
is ensured (Chen and Allgöwer, 1998).

To use AD techniques to solve the optimal control
problem (20), it is firstly converted into the Mayer
form. Augment system (8) by defining

ẋn+1(t) = ϕ(x(t),u(t)), xn+1(0) = 0
y1(t) = ξ(x(t),u(t))
y2(t) = ζ(x(t),u(t))

yq+s+1(t) = ψ(x(t),u(t)) + xn+1(t)

x̃(t) =
[

x
xn+1

]
, f̃ =

[
f
ϕ

]
, x̃0 =

[
x0

0

]

y =

 y1

y2

yq+s+1

 , g =

 ξ
ζ

ψ + xn+1


Then, the optimal control problem can be recast
as

min
u(t)

J = yq+s+1(tP ) (21)

s.t. ˙̃x(t) = f̃(x̃(t),u(t)), x̃(t0) = x̃0

y(t) = g(x̃(t),u(t))
y1(t) ≤ 0 y2(tP ) ≤ 0

Let u0(k), . . . ,ur(k) be input coefficients at t = tk
and v ∈ Rm×r×P be defined as:

v :=
[
vT

0 · · · vT
P−1

]T
(22)

where vk :=
[
uT

0 (k) · · · uT
r (k)

]T
. For given vk,

x̃(k + 1) := x̃(tk+1) and y(k) := y(tk) are iter-
atively determined from x̃(k) using (15). Hence,
(21) can be represented in discrete form

min
v
J = yq+r+2(P ) (23)

s.t. x̃(k + 1) = fk(x̃(k),vk), x̃(0) = x̃0

y(k) = gk(x̃(k),vk) 0 ≤ k ≤ P − 1
y1(k) ≤ 0, y2(P ) ≤ 0

Problem (23) is a standard NLP problem. The
first order derivatives of J and constraints can be
easily obtained by using (18) and (19) repeatedly.
More specifically,

dJ

dv
=

[
dJ

dv0
· · · dJ

dvP−1

]
where dJ/dvP−1 = [Dv(P )]q+s+1 (where [·]k
stands for the k-th row of a matrix) and for
0 ≤ k < P − 1,

dJ

dvk
= ([Dx̃(P )]q+s+1 + [Bx̃(P )]n+1)×

Bx̃(P − 1) · · ·Bx̃(k + 2)Bv(k + 1)

Similarly,

dy2(P )
dv

=
[
dy2(P )
dv0

· · · dy2(P )
dvP−1

]
dy2(P )
dvP−1

= [Dv(P )]q+1:q+s

dy2(P )
dvk

= [Dx̃(P )]q+1:q+s×

Bx̃(P − 1) · · ·Bx̃(k + 2)Bv(k + 1)

Finally,

dy1(k)
dvj

=


0 k ≤ j
[Dv(j + 1)]1:q k = j + 1
[Dx̃(k)]1:qBx̃(k − 1) · · ·
Bx̃(j + 2)Bv(j + 1) k ≥ j + 1

With more advanced AD programming, the sec-
ond order derivatives are also readily to be ob-
tained (Christianson, 1999). Hence, using AD, the
nonlinear model predictive control problem can
be efficiently solved by using any modern NLP
software.

5. CASE STUDY

5.1 Evaporator

The NMPC formulation described so far is ap-
plied to the evaporation process of Newell and
Lee (1989), shown in Figure 1. This is a “forced-
circulation” evaporator, where the concentration



Table 1. Variables and Optimal Values

Var. Description Value Units

F1 Feed flowrate 10 kg/mim
F2 Product flowrate 2 kg/mim

F3 Circulating flowrate 50 kg/mim
F4 Vapor flowrate 8 kg/mim

F5 Condensate flowrate 8 kg/mim

X1 Feed composition 5 %
X2 Product composition 25 %

T1 Feed temperature 40 oC

T2 Product temperature 84.6 oC
T3 Vapor temperature 80.6 oC

L2 Separator level 1 meter

P2 Operating pressure 50.5 kPa
F100 Steam flowrate 9.3 kg/mim

T100 Steam temperature 119.9 oC

P100 Steam pressure 194.7 kPa
Q100 Heat duty 339 kW

F200 Cooling water flowrate 208 kg/mim

T200 Inlet C.W. temperature 25 oC
T201 Outlet C.W. temperature 46.1 oC

Q200 Condenser duty 307.9 kW

of dilute liquor is increased by evaporating solvent
from the feed stream through a vertical heat ex-
changer with circulated liquor. The process vari-
ables are listed in Table 1 and model equations
are given in Appendix A.

steam
F100

P100
T100

separator
P2, L2

product
F2, X2, T2

feed
F1, X1, T1

condensate
F5

cooling
water

F200, T200

evaporator

condensate

T201

condenser
F4, T3

F3

Fig. 1. Evaporator System

5.2 Nonlinear model predictive control

The control objective of the case study is to track
setpoint changes of X2 from 25% to 15% and P2

from 50.5 kPa to 70 kPa when disturbances, F1,
X1, T1 and T200 are varying within ±20% of their
nominal values. The control system is configured
with three manipulated variables, F2, P100 and
F200 and three measurements, L2, X2 and P2.
All manipulated variables are subject to a first-
order lag with time constant equal to 0.5 min
and saturation constraints, 0 ≤ F2 ≤ 4, 0 ≤
P100 ≤ 400 and 0 ≤ F200 ≤ 400. All disturbances
are unmeasured and simulated as random signals
changing every 5 minutes and passing through a
0.2-min first-order lag.

The NMPC is designed with cost function: J =∫ P

0
(y − r)TW (y − r)dt. Design parameters are:

0.5

1

1.5

L2
, m

(a)

10

20

30

X
2,

 %

(b)

40

60

80

P
2,

 k
P

a

(c)

0

2

4

F
2,

 k
g/

m
in

(d)

0

200

400

P
10

0,
 k

P
a

(e)

0

100

200

F
20

0,
 k

g/
m

in

(f)

−2

0

2

F
1,

 k
g/

m
in

(g)

−1

0

1

X
1,

 %

(h)

0 20 40 60 80 100
−10

0

10

time, min

T
1,

 o C

(i)

0 20 40 60 80 100
−5

0

5

time, min

T
20

0,
 o C

(j)

Fig. 2. Simulation result. (a)–(c) Measured out-
puts with setpoints. (d)–(f) Manipulated
variables. (g)–(j) Disturbances.

sampling period, h = 1 min, P = 5 min, input
horizon, M = 2 min, W ≡ diag[100, 1, 1]. The
nonlinear dynamic model of the process is used
as the prediction model for NMPC whilst the
actuator lags and disturbances lags are ignored
from the prediction. The ignored lags play as
process-model mismatches for the NMPC.

Simulation is performed with the above config-
uration. The results are shown in Figure 2. It
can be seen from Figure 2 that measured outputs
follow the setpoints quite well (a)–(c) in spite of
the existence of severe unmeasured disturbances
(g)–(j). This is achieved without violating the
input constraints (d)–(f). Therefore, the NMPC
controller is effective and satisfies the performance
requirements proposed.

To demonstrate the efficiency of the new formula-
tion (C1), for Taylor expansion order, d = 2 and
d = 5, the computational times are compared with
other three NMPC controllers (Table 2): C2 using
MATLAB ODE23 solver plus perturbation to get
sensitivity, C3 using ODE23 plus approximated
sensitivity using AD (Cao and Al-Seyab, 2003)
and C4 using AD to solve the differential equa-
tions but with perturbation to get sensitivity. Ta-
ble 2 shows that the differential equation solver
using AD reduces computational time by an order
of magnitude (comparing C1 with C3 and C2 with
C4) and sensitivity calculation using AD saves an-
other order of magnitude in time (comparing C1
with C4 and C2 with C3). For differentiation using
perturbation approaches, the computational time
is very sensitive to the number of independent
variables (C2 and C4), whilst for AD approaches,
it is insensitive in this case study (C1 and C3).



Table 2. Computational time (seconds)

M C1 C2 C3 C4

d = 2 d = 5 d = 2 d = 5

2 0.732 0.915 46.05 9.50 4.14 5.00

3 0.628 0.826 61.12 8.42 5.00 5.16
4 0.546 0.673 63.81 8.05 5.56 7.33

5 0.560 0.691 70.20 8.35 6.89 8.55

6. CONCLUSION

A new NMPC formulation using AD has been
proposed. The new algorithm reduces computa-
tional time both in differential equation solving
and sensitivity calculations. Hence, it significantly
improves the efficiency of NMPC. This approach
can be extended to other nonlinear problems, such
as nonlinear model identification and nonlinear
state estimation.

REFERENCES

Biegler, L.T., A.M. Cervantes and A. Wächter
(2002). Advances in simultaneous strategies
for dynamic process optimization. Chemical
Engineering Science 57, 575–593.

Binder, T., L. Blank, H.G. Bock, R. Bu-
lirsch, W. Dahmen, M. Diehl, T. Kronseder,
W. Marquardt, J.P. Schloder and O.v. Stryk
(2001). Introduction to model based opti-
mization of chemical processes on moving
horizons. In: Online Optimization of Large
Scale Systems: State of Art (M. Grötschel,
S.O. Krumke and J. Rambau, Eds.). pp. 295–
340. Springer.

Cao, Y. and R. Al-Seyab (2003). Nonlinear model
predictive control using automatic differenti-
ation. In: European Control Conference (ECC
2003). Cambridge, UK. p. in CDROM.

Chen, H. and F. Allgöwer (1998). A computa-
tionally attractive nonlinear predictive con-
trol scheme with guaranteed stability for sta-
ble systems. Journal of Process Control 8(5–
6), 475–485.

Christianson, B. (1992). Reverse accumulation
and accurate rounding error estimates for tay-
lor series.. Optimization Methods and Soft-
ware 1, 81–94.

Christianson, B. (1999). Cheap newton steps for
optimal control problems: automatic differen-
tiation and pantoja’s algorithm. Optimization
Methods and Software 10(5), 729–743.

Griesse, R. and A. Walther (2004). Evaluating
gradients in optimal control: Continuous ad-
joint versus automatic differentiation. Jour-
nal of Optimization Theory and Applications
122(1), 63–86.

Griewank, A. (1995). Ode solving via automatic
differentiation and rational prediction. In:
Numerical Analysis 1995 (D.F. GriPths and

G.A. Watson, Eds.). Vol. 344 of Pitman Re-
search Notes in Mathematics Series. Addison-
Wesley.. Reading, MA.

Griewank, A. (2000). Evaluating Derivatives.
SIAM. Philadelphia, PA.

Griewank, Andreas, David Juedes3, Hristo Mitev,
Jean Utke, Olaf Vogel and Andrea Walther
(1998). ADOL-C: A Package for the Auto-
matic Differentiation of Algorithms Written
in C/C++. version 1.8 ed.

Mahadevan, R. and F. J. Doyle III (2003). Ef-
ficient optimization approaches to nonlinear
model predictive control. International Jour-
nal of Robust and Nonlinear Control 13, 309–
329.

Newell, R.B. and P.L. Lee (1989). Applied Pro-
cess Control – A Case Study. Prentice Hall.
Englewood Cliffs, NJ.

Ricker, N.L. and J.H. Lee (1995). Nonlinear model
predictive control of the tennessee eastman
challenge process. Computers and Chemical
Engineering 19(9), 961–981.

Röbenack, K and O. Vogel (2004). Computation
of state and input trajectories for flat systems
using automatic differentiation. Automatica
40, 459–464.

Sistu, P. B., R. S. Gopinath and B. W. Be-
quette (1993). Computational issues in non-
linear predictive control. Comput. Chem.
Eng. 17, 361–367.

S.Storen and T.Hertzberg (1999). Obtaining sen-
sitivity information in dynamic optimiza-
tion problems solved by the sequential ap-
proach. Computers and Chemical Engineer-
ing 23, 807–819.

Appendix A. MODEL EQUATIONS

dL2

dt
=
F1 − F4 − F2

20
(A.1)

dX2

dt
=
F1X1 − F2X2

20
(A.2)

dP2

dt
=
F4 − F5

4
(A.3)

T2 = 0.5616P2 + 0.3126X2 + 48.43 (A.4)

T3 = 0.507P2 + 55.0 (A.5)

F4 =
Q100 − 0.07F1(T2 − T1)

38.5
(A.6)

T100 = 0.1538P100 + 90.0 (A.7)

Q100 = 0.16(F1 + F3)(T100 − T2) (A.8)

F100 =Q100/36.6 (A.9)

Q200 =
0.9576F200(T3 − T200)

0.14F200 + 6.84
(A.10)

T201 = T200 +
13.68(T3 − T200)
0.14F200 + 6.84

(A.11)

F5 =
Q200

38.5
(A.12)


