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Abstract: In this paper we propose an on-line design technique for the target control
problem of hybrid automata. First, we compute off-line the shortest path, which has
the minimum discrete cost, from an initial state to the given target set. Next, we derive
a controller which successfully drives the system from the initial state to the target
set while minimizing a cost function. The model predictive control (MPC) technique
is used when the current state is not within a guard set, otherwise the mixed-integer
predictive control (MIPC) technique is employed. An on-line, semi-explicit control
algorithm is derived by combining the two techniques and applied on a high-speed
and energy-saving control problem of the CPU processing. Copyright© 2005 IFAC
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1. INTRODUCTION

Model predictive control (MPC) exhibits attrac-
tive features that makes it interesting and relevant
to hybrid systems. The model predictive control
(MPC) and the mixed integer predictive control
(MIPC) for hybrid systems have been studied
by a number of researchers e.g. (Bemporad et
al., 2001; Lazar and Heemels, 2003). The hy-
brid models adopted by them are piecewise affine
(PWA) systems or mixed logical dynamic (MLD)
systems. At the same time the MPC for switched
hybrid systems has been discussed in (Stursberg
and Engell, 2002).

Here, we use the hybrid automata formalism in or-
der to model hybrid systems. Therefore, the tran-
sition guards are full dimensional sets rather than
hyper-planes. This kind of modelling introduces
non-determinism, e.g. within the guard set the
controller can make the choice between switching
or idling.

Considering the high computational complex-
ity of the MPC on-line algorithm presented in
(Bemporad et al., 1999), we formulate a semi-
explicit(sub-optimal) method that reduces the
computational burden. For this, we remove the
off-line choices for the switching part, by selecting
the shortest discrete path. It is then shown that
the shortest path can be used to derive a semi-
explicit algorithm for hybrid automata, instead of
solving the mixed integer programming problem
(NP hard) for each discrete-time instant.

The paper is organized as follows. In the next sec-
tion the basic definitions and concepts related to
hybrid automata are given. In section 3, the MPC
problem and associated computational issues are
stated. Similarly, in section 4, the MIPC problem
is addressed. In section 5, a semi-explicit algo-
rithm for the problem stated is derived. A CPU
application of the algorithm is given in section 6.
Finally, section 7 contains conclusions.



2. MODELLING AND PROBLEM
FORMULATION

2.1 Hybrid automaton

Let X € R™ be the continuous state space and
let Q@ = {q1,...,qn} be the finite set of discrete
states. The continuous state space specifies the
possible values of the continuous states for each
q € @ where the continuous dynamics is modelled
by differential or difference equations. The general
nonlinear formulation is non-trivial involving op-
timization of nonlinear equations. Thus, a linear
discrete-time model is used as follows:

z(t+1) = fo(x(t),u(t)) = Aga(t) + Byu(t) + ¢4

(1)
where A, € R™", B, € R"*™ ¢, € R", and
u € U C R™ is the system input: U = {u|Cyu <
hy,Cy € R>™ hy € R} The discrete-time
hybrid automaton is defined, similarly to (Pang
and Spathopoulos, 2004), as follows:

Definition 1. A linear discrete-time hybrid
automaton is a collection A = (Q, X, f,U, X, Inv,
E,G,c) where Q = {q1,...,qn} is a set of discrete
states; X C R™ is the continuous state space;
f:Qx X xU — 2% assigns every discrete
state a Lipschitz continuous evolution function
which is described by the linear difference equa-
tion (1); U and ¥ are the sets of continuous and
discrete inputs respectively; let € € ¥ denote the
situation where no discrete command is issued;
Inv : Q — 2% assigns each ¢ € Q an invariant
set; F C Q x X x (Q is a collection of discrete tran-
sitions; G : E — 2% assigns each e = (¢,0,¢') € E
a guard; ¢ : (@ X Q) — RT assigns a positive cost
to each transition.

All the sets involved above are considered as
polytopes. The guard set Gy 4 (o) is the subset
of the state space where the system can switch
from location ¢ to ¢’. The moment at which the
transition takes place is a design variable. An
external system (controller) orders an appropriate
discrete input when a certain condition, subject to
design, is satisfied.

Definition 2. A hybrid controller is a map: C :
QxX — 27*U_The controller issues both discrete
inputs Cy(q(t),z(t)) € 2% and continuous inputs
Celq(t),=(t)) € 2Y.

2.2 Problem Statement

Let II = {n} denote the set of all discrete paths
from ¢p to gr:
II= {W|EIO-7EIN € Na] = 07"'7N7 LQN =dqr:
€; = (Qjaaa qj-‘rl) eEANT = ((JO, an)}

Essentially, the discrete paths are derived by ab-
stracting the continuous dynamics away i.e. con-
sidering reachability on the discrete graph. Let
I(m) be the number of discrete transitions in a
path 7 € II. Therefore, 7 = (¢§, ¢T, ..., qﬁw)), with
a% = 9o, qzzw) = g and the cost of path 7 is

defined as: ¢(7) = Zi(:?? c(qr_1,¢F). This function
represents the transition cost along 7 from an ini-
tial state (qo, o) to a final state (q(ts), z(ty)) € F.

Given a hybrid automaton A and a target set F' =
(qr, XF), for a state (qo, zo), the control problem
defined here can be cast as follows: Design the
sequence of control inputs such that all trajec-
tories will reach the target set while minimizing
associated cost functions. This is formulated in
two steps:

(1) find the shortest discrete path with the min-
imal discrete cost ¢(m);

(2) compute optimal (continuous and discrete)
control inputs for each discrete state (loca-
tion) on-line. Here optimality is addressed
locally and therefore the overall design is
suboptimal.

For the first step, we utilize a generalization of
Dijkstra’s shortest path algorithm on weighted
graphs (Martins et al., 1998), and find the shortest
path with the minimum cost ¢(7) from go to gp.

For the second step, depending on whether the
current state belongs to a guard set or not, we
have two cases. If the current state is not in the
desired guard set, then the standard MPC method
is employed to drive the current state to the guard
set where the system may be switched to the next
discrete state along the path 7. On the other hand,
if the current state has already reached the guard
set, then the MIPC method is used to drive the
current state to the next guard set along the path
m. This procedure is repeated until the target set
is reached without violating any constraint.

3. THE MODEL PREDICTIVE CONTROL
(MPC) PROBLEM

3.1 Constrained Optimal Control

For the shortest path 7, the aim is to com-
pute a suboptimal controller which successfully
drives the system from (go, zo) into (¢r, Xr). Let
7 = (qf, 4T, ...,qzzw)) be the path, and G7, ;.. =
{z|CTx < hT} be the transition guards from
discrete state ¢f to ¢f,;, with i =0,1,...,I(7) — 1,
where C7 € R"*" AT € R". Also, let Xp =
{z|Crz < hp}, with Cp € R X" hp € R".
Given a state z(t) € Inv(q¢l), we define the fol-
lowing optimal control problem:

Problem 1

First define the following cost function:



N-1
Ji(UN ™ a(t)) =t wiel| a(t + NJt) = T; [l +)_wo
k=0

N-1
(e + kl) =T llp +)_ wse [ ult +klt) = ue |,
k=0

The factors wi,ws,ws € R are appropriate weights
for the contributions of these three terms. Also,
UNTY = W (t+0t), uT(t + 1[t),...,u" (t + N —
1/t)]T. At each time t, x(t + k|t) and u(t + k|t)
denote the predicted state and input at time ¢+ k.
lx(t + k|t) — T3], describes the distance between
the current state and (the nearest boundary) of
the guard (target) set:

T = (CHIP. z:f Z:E {0,1,...,l(m) — 1} @)
Xp if i=1(m)

with a norm || - ||, p = 00,2, 1. ||u(t + k|t) — uellp

contains the deviation of u(t-+k|t) from a reference

input u.. N is the prediction horizon.

The finite-time optimal control problem is defined
as:
min J; (U1, (1))

[Zaa

z(t+k+1]t) =

Aqu(t + k/’|t) + qur’u(t + k/’|t) + qur
u(t+klt) e U
x(t + k|t) € Inv(q])

s.t.

The main idea of predictive control is to use
the model of the plant to predict the future
evolution of the system. Based on this prediction,
at each time step t the controller selects a sequence
of future command inputs through an on-line
optimization procedure, which aims at minimizing
the distance from the current state to the target
set, and enforces fulfillment of the constraints.
Only the first sample of the optimal sequence is
actually applied to the plant at time ¢. At time
t 4+ 1, a new sequence is evaluated to replace the
previous one. This on-line “re-planning” provides
the desired feedback control feature.

3.2 Computational issues

The objective of using MPC in a discrete state
q is to drive the current state to the guard set
(target set) in an optimal way (locally). The terms
oo lla(t+ ki) = Tillp and 30" [lu(t + kJt) -
ue||p are less important comparing with the ||z (t+
N|t) — T;||p. In the following, we use an objective
function that only involves the position of the final
state x(t + N|t).

Let T; = {a:|CTZx < HT“CTi S R"‘XH,HTi S
R™}. It is clear that if Cpz(t + NJt) < Hp,,
then the state x(¢t + NJt) is in the set T;. Let
Er = Crxz(t + N|t) — Hr,, where E; is the j-th

element of the vector B € R™t. We re-formulate
problem 1 as:
J?Viyl max E; (3)
z(t+k+1[t) = Agra(t+klt)+ Beru(t+klt) +cqr
stu(t+klt)eU
x(t+ k|t) € Inv(q))
Consider that:
N—1
o(t+ Nty = ANa(t) + Y A*Buy 1% (4)
k=0
The above min-max optimization problem can be
equivalently transformed as:

min  z
vyt
N-—1
CTiAN:C(t)+ CTiZAkBUNflfk*HTi <1p,2
k=0

s.t. x(t+k+1t) =

u(t+klt) e U

x(t + k|t) € Inv(q])

where 1; is a column vector of j length of ones,
i.e. 13 =:[1,...,1]7 € RJ. The above problem can
be rewritten in the more compact form, such that
by treating x(t) as a vector of parameters, the LP
becomes a multi-parametric LP:

mzin J(z,z(t)) = =z (5)
st. Gz < S+ Fz(t) (6)

where G, S, F are appropriate matrices. More
details about multi-parametric LP can be found
in (Bemporad et al., 2002).

The advantage of above formulation is that the
objective cost function indicates whether the final
state x(t + N|t) has been driven to T;. i.e. if
J(z,2(t)) = z < 0 then z(t + N|t) € T;, otherwise
x(t + N|t) &€ T;. Here, if there exists a minimal
N*, such that J(z,z(t)) = z < 0, then N* is the
minimal number of steps from z(t) to T; and the
corresponding U/ is the optimal control sequence.
In this case, online computation is not necessary,
since an optimal solution is derived off-line.

4. THE MIXED INTEGER PREDICTIVE

CONTROL (MIPC) PROBLEM
Once the state (t) is driven to a guard set G, .|
using MPC, it is up to the discrete controller to
decide whether to let it idle in state ¢; or switch
to the next state ¢;41. To design the local opti-
mal discrete controller, the logical decisions and
the transition structure of A are expressed using
relations of binary variables, and the solution is
then determined by Mixed Integer Programming
(MIP).



The dynamics at ¢ are determined by the cur-
rent discrete state and input. Let |Q| denote the
number of discrete states of A. We introduce |Q|
binary variables defined as

1 if dt)=a
Ait) = { 0 otherwise i€l 1@l
It is clear that:

Q|

Z Ai(t) =1 (7)

T

Under the assumption that the guard set Gy, ;. .,
has no intersection with another guard set Gg, ,
j # i+ 1 along the path, we have for state

z(t) € GT that:

Qi qi+1

Ai(t) + X (t) =1 (8)
where \;(t) and A;11(t) are the binary variables
associated with the discrete states ¢ and qf
respectively.

The following optimal control problem is solved
for the state z(t) € G4, ,q:+, Which can be observed
by the system.

Problem 2

Define the cost function

JIUN Y x(t)) = wila(t + N'|t) ~Tig ||, +wor

N'—1 N’ —1
Sl + k)=Tigallp +wsd ) llult + k) — uell,
k=0 k=0

where N’ is the prediction horizon and consider
the finite-time optimal control problem
min J/(UN (1)) (9)
ot +k+ 1[t) = Ni(t + k[t)[Agrz(t + k[t)+
Baru(t + klt) + cqr] + Xiga (¢ + k[t)[Agr, |
x(t + klt) + qurﬂu(t + k|t) + quﬁrl]
u(t + klt) e U
ot + k0 € G
Ai(t + klt), Nipa(t + K|t) € {0,1}
Ai(t+ E[t) + Xipa (E+E[t) =1
it +k[t) = Ni(t+E—1]t) <0

s.t

(10)
It should be noted that the set T;y; is different
for the set T; in problem 1 as:

Gr . o ifie{0,1,..,0(m) -2}
X — qi+1,9i+2
Tt {XF if i=1(n)—1

The constraint A;(t + k[t) — Ai(t + &k —1|t) <0 for
all k =1,..., N’ in the last line of equation (10)
guarantees that there is only one jump from ¢ to
qf,,. For any [ = 0,...,N', if \;(t +[[t) = 0, the
system is switched to the next discrete location
qf,, since it is impossible to have another I’ > [
such that A\; (¢t +U'|t) = 1. O

In order to derive a linear optimization problem,
the products of variables are linearized. The M-
formulations (Stursberg and Panek, 2002) trans-
form the products z;(t) - A\i(t) and w;(t) - A;(t) for

7 =1,...n in terms of linear inequalities, see also
(Bemporad et al., 1999).

The computational methods of MIPC are different
from those of MPC. The tools of MIPC are mixed
integer linear programming (MILP) or mixed in-
teger quadratic programming (MIQP) instead of
linear programming or quadratic programming for

MPC.

5. A SEMI-EXPLICIT ALGORITHM

Given a discrete path ™ = (qo,q1, s i(x) = qF)
and an initial state (go,zo), the following online
predictive control algorithm derives a controlled
trajectory from (go, o) to the target set :

Algorithm 1. (A semi-explicit algorithm).
1.t=0,i=0,2(0) = zo;
2. while i < (7)) — 1 do;

3. if 2(t) € G741

4. solve problem 2;

5. if A () =1A2(t+1) € Gy,

6. C*(q(t),z(t)) = (e,ur (0)), t :=t + 1;
go to 3

7. else

8. C*(q(t), (1)) = (04,41, ui (0));
t:=t+1;1:=i+1;goto 2

9. end

10. else

11.  solve problem 1;C*(q(t), z(t)) =(e, u}(0));
t:=t+1;goto3
12. end while
13. while z(t) ¢ X do;
14. solve problem 1;C*(q(t), z(t)) = (e, u;(0));
t:=t+1
15. end while

The above algorithm contains two while loops.
The first while loop stops when the system reaches
the last discrete state qp of the path. The second
while loop terminates when z(t) € Xp. In the
first while, the algorithm first checks whether the
continuous state z(t) is in the guard set or not. If
yes, it solves the MIPC problem 2. The solution
of problem 2. provides both the continuous and
discrete inputs. When a discrete switching occurs,
the index ¢ is increased by one and the system
evolves in the new discrete state. On the other
hand, if the continuous state is outside the guard
set, the algorithm solves the MPC problem 1 and
calculates the continuous input which optimally
drives the system to the guard (target) set.

In comparison to MLD models, the guard sets
in hybrid automata bring more choices for the
controller. Thus, it costs more to compute the
switching sequence on-line. Algorithm 1 is called
semi-explicit  (Lazar and Heemels, 2003) since
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Fig. 1. The CPU model

the shortest discrete path is calculated off-line,
while both continuous and discrete inputs are
calculated on-line. In this semi-explicit set up the
CPU computational time is reduced.

In comparison to the feedback controller of the
time-optimal control problem stated in (Pang
and Spathopoulos, 2004), the on-line controller of
algorithm 1 achieves reduction of storing capacity,
since in (Pang and Spathopoulos, 2004) each level
set has to be stored. In addition, the on-line
controller avoids non-determinism by supplying a
sequence of optimal control inputs, instead of sets
of control inputs. Thus, controlled trajectories can
be simulated.

6. CPU PROCESSING CONTROL

In this section, the above results are applied on
the CPU processing control problem (Azuma and
Imura, 2003). In order to realize the high-speed
and energy-saving computing more effectively, we
model the system as a hybrid automaton and
apply the semi-explicit algorithm 1 to this system.
The state of system when a sufficiently long time
has passed after booting the system is defined as
equilibrium state of this model, and define the
output of the temperature sensor equipped on
the motherboard as the CPU temperature. Then
from some experimental results, the dynamical
behaviors of this model around equilibrium state
are given as follows: (a) the time variation of the
amount of CPU tasks in the buffer proportionally
decreases as clock frequency increases, and (b) the
time variation of CPU temperature proportionally
increases as the clock frequency increases and the
angular velocity of cooling fan decreases.

Thus the state equations of this model around the
equilibrium state are expressed as follows:

T = —ch
p: —K2p+K3c—K4w (11)
w= 7K5w + KS’U

where m € R, p € R, and w € R are the deviations
of the amount of CPU tasks in the buffer, the CPU
temperature and angular velocity of a cooling fan
from the equilibrium state, respectively, and ¢ € R
and v € R are deviations of clock frequency and
the voltage input of a cooling fan from equilibrium
input, respectively. The first and second equations

Table 1. Continuous dynamics.

State Dynamics(z =) Input Invariant
00 0 00 o —10<7<3
a1 0 —0.05 —0.5 |¢4+|00 |u ST°7 —10< p< 10
00 _3 0 0.5 v €[-10,10] 152,210
r | - <10
00 0 —-10 =
c € [-5,5] p <10
0 —0.05 —0.5 0.1 0 =
LR IO ol L I 05:|uv6[—10,10]7\'+0210
L : —10<w<10
00 0 -10 0< <10
a3 0 —0.05 —0.5 |z +]| 010 [u € 5[0_5’5] 10<p<7
00 -3 0 0 v= ~10< w< 10

@ Glz a GB @ G31 0

Fig. 2. The discrete path .

express the dynamics (a) and (b), while the third
equation is the dynamics of the DC motor of fan.

Let ¢ and v can be switched according to the
values of m and p at the switching times. The
policy is that

e the voltage v of cooling fan is the only control
input in the usual mode (q1);

e the clock frequency c is the only control if
the amount of CPU tasks is large but CPU
temperature is not so high that is called busy
mode (gs3);

e both c and v are used as control inputs only
in an emergency mode (g2).

Let 2 = [m, p,w]T and u = [c,v]T be the contin-
uous state and control input. The parameters in
each location are shown in Table 1. The discrete
path considered in this example is described in
figure 2. where the guard sets are:

-1 -10] [—107

Gi2(012) =q @ 1 00|z< 3
L 0 1 0_ L 10 |
[—1 -1 0] [—107

G23(0’23) = xX 1 00 .Z‘S 10
L 0 1 0_ L 7 |

1 00 3

-1 00 0

Gsi(o31) =z 0 10l%=]7

0 —-10 10

The initial and target states are (g1, [1,7, —10]7)
and (q1,[0,0,0]7) and the equilibrium input is
ue = [0,0]T. Applying the algorithm 1 on the
discretized automaton with 75 = 0.5s, we have
the simulation results shown in figure 3, where
the objective functions take the form of 3. The
trajectory projected on m — p space is shown in
figure 4. The optimal input of the controller is
depicted in figures 5 and 6.The execution time on
a Pentium 1GHz with 256 MB RAM is 3.435 s.

7. CONCLUSIONS

The main contribution of this paper is the use
of hybrid automata models in association with
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and optimal discrete inputs.
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predictive control techniques in order to derive
suboptimal solutions for the target control prob-
lem instead of using MLD or PWA models. The
difference is that the hybrid automaton model
involves guard sets (switching conditions) that
introduce non-determinism. Algorithm 1 reduces
the on-line computation by deriving off line the

shortest discrete path. In addition, the on-line
controller avoids non-determinism by supplying
a sequence of optimal control inputs, instead of
sets of control inputs as in (Pang and Spathopou-
los, 2004).

Model predictive and mixed integer predictive
control of hybrid systems may be extended to
systems in the face of persistent disturbances.
The controller with a robust performance for the
closed-loop system has to be provided.
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