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Abstract: Recently it was shown that for the linear time-invariant plant
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Keywords: iterative methods, passive, non-linear systems, Lyapunov stability,
adaptive control

1. INTRODUCTION

Repetitive control has proven to be very effec-
tive for a system to track/reject periodic refer-
ence/disturbance signal in practical applications.
In many cases, the reference and/or disturbance
periodic signals may contain different fundamen-
tal frequencies and the ratio of these frequen-
cies can be irrational. So the so-called multi-
periodic repetitive control was analysed by sev-
eral authors (Weiss and Hafele, 1999) (Owens et
al., 2004) (Dang and Owens, 2004).

In (Weiss and Hafele, 1999), Weiss gave a H∞

stability condition for linear multi-periodic sys-
tem based on input-output transfer function,
which requires that the plant be positive real
or approximately so. The Lyapunov stability
analysis is given by (Owens et al., 2004). He
proved that asymptotic/exponential stability is
guaranteed if the linear plant is PR(Positive
Real)/SPR(Strictly Positive Real). When the real

plant is not necessarily positive real, however
minimum-phase and having sign definite high-
frequency gain, Dang(Dang and Owens, 2004)
designed an universal adaptive multi-periodic
repetitive control system, which doesn’t need
any plant parameter information. Such plant is
called ASPR(Almost Strictly Positive Real) or
ASNR(Almost Strictly Negative Real).

It is known that SP(Strictly Passive)/ASP(Almost
Strictly Passive) properties of non-linear plant
are equivalent to SPR/ASPR properties in linear
case. Motivated by this observation, this paper
attempts to show that controlled plant structures
like passivity and almost passivity render possibil-
ity of an adaptive multi-periodic repetitive control
scheme for such non-linear plant. Same as (Dang
and Owens, 2004), non-identifier-based universal
adaptive control algorithm is designed. A rigorous
Lyapunov stability analysis is presented and some
simulations are given accordingly..



The paper is organized as follows. Section 2 de-
fines the problem. In Section 3, some basic def-
initions and results about strictly passive and
almost strictly passive system are recalled. In
Section 4, an adaptive multi-periodic repetitive
control scheme is designed for the SP/ASP general
non-linear plant. Lyapunov second method is ap-
plied for system stability analysis. In Section 5, a
Nussbaum-type adaptive gain is introduced when
the control direction of non-linear plant is un-
known. Simulation results are presented in Sec-
tion 6. Finally in Section 7, conclusion is given.

2. PROBLEM DEFINITION

The considered general non-linear plant is de-
scribed as follows:

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t)) (1)

where x(t) ∈ X = Rn, u(t) ∈ U = Rm, y(t) ∈
Y = Rm. Assume that the plant has at least one
equilibrium. Without loss of generality, we assume
that the plant (1) has an equilibrium at the origin,
that is, f(0, 0) = 0, h(0, 0) = 0.

The non-linear adaptive MIMO multi-periodic
repetitive control system is shown in Fig. 1. The
R, D, Y, U, E are reference, disturbance, output,
control input and error respectively. The plant∑
G is finite-dimensional and non-linear. Both ref-

erence r(t) and disturbance d(t) are multi-periodic
with components of period τi, i = 1, ..., p. These
periods are assumed known. The multi-periodic
repetitive controller is M(s) =

∑p
i=1

αiI
1−Wi(s)e−sτi

,
we select

∑p
i=1 αi = 1 without loss of general-

ity. Wi(s) is a low-pass filter introduced to fil-
ter out noise and/or trade off tracking accuracy
against closed-loop robustness. C1(s), C2(s) are
feed-forward gains given in the following sections
designed to guarantee the Lyapunov stability of
the whole system including the plant.

The control design objective is to design adaptive
feed-forward controller C1(s), C2(s) that guaran-
tees the BIBO stability of the whole system under
the condition that only minimal plant information
should be needed. The paper does not propose
that the algorithm discussed is ideal in practice.
Rather, it demonstrates the potential for achiev-
ing stability under conditions of extreme uncer-
tainty. With this in mind, the community can
confidently address the issue of improved general-
purpose algorithms based on more complete plant
information.

Fig. 1. Non-linear adaptive MIMO multi-periodic
repetitive control system

3. PRELIMINARY DEFINITIONS AND SOME
PROPOSITIONS

In this section, we review a number of basic
concepts related to the notions of dissipativity
and passivity. Then some propositions are given
and proved, which prepares the stability proofs for
adaptive stabilization and tracking in Section 4.

Definition 1. Strictly Dissipative(Sepulchre et al.,
1997): Assume that associated with the system
(1) there is a function w : U × Y → R, called the
supply rate, which is locally integrable for every
u ∈ U , that is, it satisfies

∫ t1
t0
|w(u(t), y(t))|dt <∞

for all t1 ≥ t0. We say that the system (1) is
strictly dissipative in X with the supply rate
w(u, y) if there exists a function V1(x), V1(0) = 0
and V1(x) ≥ 0, such that for all x ∈ X and a
positive definite function S(x(t)),

V1(x(t))− V1(x(0))

=

t∫

0

w(u(τ), y(τ))dτ −
t∫

0

S(x(τ))dτ (2)

for all u ∈ U and all t ≥ 0. The function V1(x) is
called a storage function.

Definition 2. Strictly Passive(Willems, 1972)(Byrnes
and Isidori, 1991): A system (1) is strictly pas-
sive if it is strictly dissipative with supply rate
w(u(t), y(t)) = yT (t)u(t).

Definition 3. Output Feedback Passive(Sepulchre
et al., 1997): A system (1) is said to be OFP(Output
Feedback Passive) if it is dissipative with supply
rate w(u(t), y(t)) = yT (t)u(t) − ρyT (t)y(t) for
some ρ ∈ R. The output feedback passive proper-
ties are quantified with the notation OFP (ρ).



Remark 1. It’s obvious that positive sign of ρ
means that the system has an excess of passivity
and conversely negative sign of ρ means that the
system has a shortage of passivity.

Definition 4. Almost Strictly Passive(Kaufman
et al., 1997): A system (1) is almost strictly
passive(ASP) if there exists a positive definite
static(constant or time-varying, however bounded)
feedback matrix Ke(y) such that the resulting
closed-loop system is strictly passive(SP).

Proposition 1. A system (1) is ASP if there exists
a non-negative function V1(x(t)) and a positive
definite function S(x(t)) such that

V1(x(t))− V1(x(0)) =

t∫

0

yT (τ)u(τ)dτ

+M

t∫

0

yT (τ)y(τ)dτ −
t∫

0

S(x(τ))dτ

(3)

for all u(t) and all t ≥ 0 and some positive
constant M .

Proof: According to Definition 4, the closed-loop
system from ur(t) to y(t) is SP, where ur(t) is the
new control input of the closed-loop system. From
u(t) = ur(t) − ke(y)y(t), we have ur(t) = u(t) +
ke(y)y(t). Then due to passivity, for all u(t) and
all t ≥ 0 there exists a nonnegative function
V1(x(t)), and a positive definite function S(x(t))
such that

V1(x(t))− V1(x(0))

=

t∫

0

yT (τ)ur(τ)dτ −
t∫

0

S(x(τ))dτ

=

t∫

0

yT (τ)u(τ)dτ +M

t∫

0

yT (τ)y(τ)dτ

−
t∫

0

S(x(τ))dτ

(4)

where M is some positive constant. 2

Remark 2. It’s obvious that an almost passive
system is an output feedback passive with ρ < 0,
that means the system has a shortage of passivity.

4. GENERAL PASSIVE/ALMOST PASSIVE
NON-LINEAR PLANT

Based on the above definitions, our main result is
stated in the following theorem.

Theorem 1. Consider the SP or ASP plant
∑
G

described by (1). The reference/disturbance sat-
isfies r ∈ L2[0,∞), d ∈ L2[0,∞). All filters
Wi(.) satisfy |Wi(.)| < 1. If the following con-
stant/adaptive feed-forward control laws

(α): C1(.) := k is any positive constant and
C2(.) := I, if

∑
G is SP.

(β): C1(.) := k(t) is an adaptive gain with adap-
tive law k̇(t) = ‖e(t)‖2 and C2(.) := I, if

∑
G is

ASP.

and arbitrary x0 ∈ X is applied to (1), then
the non-linear multi-periodic repetitive system in
Fig. 1 is stable in the BIBO(bounded-input/bounded-
output) sense that

t∫

t1

‖e(θ)‖2 dθ < M1 +M2

t∫

t1

‖r(θ)‖2 dθ (5)

for some positive constants M1,M2, finite time t1
and also k(.) ∈ L∞[0,∞), limt→∞ k(t) = k∞ <∞
for (β).

Proof: See Appendix 1.

Remark 3. Because perfect zero-tracking for peri-
odic reference signals will be lost if the low-pass
filter is not selected to be 1. we need to revise the
adaptive scheme of k(t) as

k̇(t) =
{ ‖e(t)‖(‖e(t)‖ − δ) if ‖e(t)‖ ≥ δ

0 if ‖e(t)‖ < δ

The inclusion of δ in the adaptive scheme of k(t)
is to prevent its divergence and also considers the
possible system output measurement error.

Remark 4. Here we only assume r ∈ L2[0,∞),
which is not satisfied by all multi-periodic sig-
nals(e.g. r = 5 + sin2πt+ cos

√
2πt). In (Owens et

al., 2004), Owens assumed that 1
T

∫ T
0
rT (t)r(t)dt <

+∞ for any value of T including T = ∞, which
multi-periodic signals satisfy. We can’t assume
that here because we can’t give a rigorous proof
of k(.) ∈ L∞[0,∞) although the simulation in
Section 6 shows that k(.) is bounded.

5. NON-LINEAR PLANT WITH UNKNOWN
CONTROL DIRECTIONS

In section 4, the signs of unknown parameters
multiplying control variables, called control di-
rection in (Ye and Jiang, 1998)(Jiang et al.,
1995)(Kaloust and Qu, 1995), are required to be
known a priori. These signs represent motion di-
rections of the plant under any control and knowl-
edge of these signs makes adaptive control design



much easier. The objective of this section is to
develop control design procedure which does not
require a priori knowledge of control directions.

Now we introduce a Nussbaum-type adaptive
feed-forward gain:N(λ(t))Γ where Γ = Im×m, N(.) :
R → R is any continuous function of Nussbaum-
type(Nussbaum, 1983) , that is, N(.) has the
properties

supk>k0
1

k−k0

∫ k
k0
N(τ)dτ = +∞ and

infk>k0
1

k−k0

∫ k
k0
N(τ)dτ = −∞.

For example, N(.) : τ → τ2 cos τ suffices.

The Nussbaum-type gain here acts like a switch-
ing gain which learns the right sign(spectrum) of
the plant control directions.

Theorem 2. Consider the plant
∑
G described as

follows:

ẋ(t) = f(x(t), σu(t)), x(0) = x0

y(t) = h(x(t), σu(t)) (6)

where σ ∈ (1,−1) is unknown and the plant from
σu(t) to y(t) is ASP. Suppose that both reference
r(t) and disturbance d(t) are identically zero.
C1(.) is same as (β) case in Section 4. C2(.) :=
N(λ(t)))I is a Nussbaum-type gain with adaptive
law λ̇(t) = e(t)T z(t), λ(0) ∈ R. The low-pass filter
Wi(s) is set to be 1 for simplicity. Then the non-
linear adaptive multi-periodic repetitive system
in Figure 1 is globally asymptotically stable in
the sense that y(.) ∈ Lm2 [0,∞), λ(.) ∈ L∞[0,∞),
k(.) ∈ L∞[0,∞) and limt→∞ k(t) = k∞ <∞.

Proof: See Appendix 2. It should be pointed out
that we can’t prove that limt→∞ λ(t) = λ∞ < ∞
although the simulation seems to show λ con-
verges.

6. SIMULATION

For sake of simplicity, a SISO system is examined
to illustrate the control system performance. The
reference is r = r1 + r2, where r1 = sinω1t +
1.5 sin 5ω1t, r2 = sinω2t and ω1 = 0.2×2πrad/sec,
ω2 =

√
3×2πrad/sec. The disturbance is a square

wave at a period of 1
7Hz and with peak value

7 and 3. A square wave is chosen to indicate
the scheme can cope with signals with infinite
frequency content. The weightings are chosen to
be 0.4, 0.4, 0.2(for the disturbance rejection repet-
itive sub-controller).

Simulation 1. A simulation is done for ASP gen-
eral passive non-linear plant described as

ẋ1 = −x1u
2 − 3x3x

2
1, x1(0) = 1

ẋ2 = −2x3 − 7x3
2, x2(0) = −7

ẋ3 = 3x3
1 + 2x2 + 8x3 + u, x3(0) = 5

y = x3

(7)

The control scheme of (β) in Section 4 is applied
and we select k(0) = 1, Wi(.) = 0.99 and δ = 0.01.
The simulation result is given in Fig. 2.
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Fig. 2. Error e(t) and adaptive gain k(t) for ASP
plant

The simulation result shows that the output con-
verges to a bound of the reference input and the
adaptive gain converges to a positive constant.

Simulation 2. A simulation is also done for non-
linear plant with unknown control directions de-
scribed as

ẋ1 = −x1 − 3x3x
2
1, x1(0) = 1

ẋ2 = −2x3 − 7x3
2, x2(0) = 5

ẋ3 = 3x3
1 + 2x2 + 8x3 + σu, x3(0) = 8

y = x3

(8)

Here we set σ = −4. The control scheme in
Section 5 is applied and we select k(0) = 1,
Wi(.) = 1 and λ(0) = 0. The simulation result
is given in Fig. 3.
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Fig. 3. Error e(t) for non-linear plant with un-
known control direction

The simulation result shows that the Nussbaum-
type control scheme is capable for the plant to
track/reject a multi-periodic reference/disturbance
signal.



7. CONCLUSION

A kind of non-linear adaptive MIMO multi-
periodic repetitive control system is studied. The
system is proved to be stable in BIBO sense
and the stability is analysed by Lyapunov second
method. The adapting gains are proved to be
bounded and converge. A Nussbaum-type adap-
tive gain is introduced when control direction of
non-linear plant is unknown. Simulations show the
effectiveness of the proposed adaptive scheme.
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8. APPENDIX

Appendix 1: Proof of Theorem 1

Assume

ẋWi(t) = AWixWi(t) +BWivi(t)
zi(t) = CWixWi(t)

(9)

is a minimal realization of strictly bounded real
Wi(s). Then according to Corollary 1 and the
inequality (10) in (Owens et al., 2004), we have
(xTWi

PWi
xWi

)′ ≤ µ2
i v
T
i vi−zTi zi, where 0 < µi < 1

is a constant.

Firstly, we consider the case that (β) is applied
for a ASP plant and assume that d = 0, r 6= 0.
Introduce a positive definitive Lyapunov function
V of the form(time subscripts dropped in the
following for notational convenience):

V =
1
k
Ṽ , Ṽ = V1 +

1
2k

p∑

i=1

αiM(t)

M(t) := (

t∫

t−τi

‖zi(θ)‖2 dθ + xTWi
PWi

xWi
)

(10)

where V1 is defined in Definition 2. By differenti-
ating V, we have

dV

dt
=

1
k

dṼ

dt
− 1
k2

dk

dt
Ṽ ≤ 1

k

dṼ

dt
(11)

And also we have

dṼ

dt

≤ zT y +My2 − S(x)− 1
2k2

dk

dt

p∑

i=1

αiM(t)

− 1
2k

p∑

i=1

αi(µ2
i ‖vi(t)‖2 − ‖zi(t− τi)‖2)

< zT (r − e) +M(r − e)2

− 1
2k

p∑

i=1

αi(µ2
i ‖vi‖2 − ‖vi − ke‖2)

≤ zT r + 2MrT r + 2MeT e

− 1
2k

p∑

i=1

αi(µ2
i − 1) ‖vi‖2 − k

2
eT e

≤ (2M +
k

2(1− µ2
i )

)rT r + (2M − k

2
)eT e

−
p∑

i=1

αi(

√
1− µ2

i

2k
vi − 1

2

√
2k

1− µ2
i

r)2

< (2M +
k

2(1− µ2
i )

)rT r + (2M − k

2
)eT e

(12)

Therefore,

dV

dt

< (
2M
k

+
1

2(1− µ2)
)rT r + (

2M
k
− 1

2
)eT e

< M̄rT r + (
2M
k
− 1

2
)eT e

M̄ := (
2M
k(0)

+
1

2(1− µ2)
)

(13)



Integrating (13) yields

V (t
′
) < V (0) +

t
′∫

0

M̄rT rdt+

t
′∫

0

(
2M
k
− 1

2
)eT edt (14)

We will establish k(t) ∈ L∞[0, t
′
) by contradic-

tion. Suppose k(t) 6∈ L∞[0, t
′
), the term

∫ t′
0

( 2M
k −

1
2 )eT edt will be negative infinity.

∫ t′
0

( 2M
k(0) +

1
2(1−µ2) )rT rdt is positive finity. So the right part
of (14) is negative, hence contradicting the non-
negativity of the left hand side of (14). Therefore,
we have k(t) ∈ L∞[0, t

′
). When t

′
=∞ , we have

k(t) ∈ L∞[0,∞). Due to the monotonic increase
of k(t), we have limt→∞ k(t) = k∞ <∞.

We rewrite (13) as

dV

dt
< M̄rT r + (

2M
k
− 1

4
)eT e− 1

4
eT e (15)

Let t1 such that 2M
k(t1) = 1

4 , then integrating (15)
from t1 to t yields

0 ≤ V (t) < V (t1) +

t∫

t1

M̄rT rdt

+

t∫

t1

(
2M
k
− 1

4
)eT edt−

t∫

t1

1
4
eT edt

< V (t1) +

t∫

t1

M̄rT rdt−
t∫

t1

1
4
eT edt

(16)

Therefore we have
t∫

t1

‖e(θ)‖2 dθ < M1 +M2

t∫

t1

‖r(θ)‖2 dθ (17)

for some positive constants M1,M2 and some
finite time t1.

The proof for the case that r = 0, d 6= 0 is similar
as above. Also if we set the low-pass filter Wi(s)
to be 1, full disturbance rejection will be achieved.
We outline this analysis as follows:

V = V1 +
1
2k

p∑

i=1

αi

t∫

t−τi

‖zi(θ) + di(θ)‖2 dθ (18)

By differentiating V, we have

dV

dt
< −S − (

k

2
−M)yT y

− 1
2k2

dk

dt

p∑

i=1

αi

t∫

t−τi

‖zi(θ) + di(θ)‖2 dθ

< −(
k

2
−M)yT y

(19)

Integrating (19) yields

V (t
′
) < V (0)−

t
′∫

0

(
k

2
−M)yT ydt (20)

Similar as before, we have k(t) ∈ L∞[0,∞),
limt→∞ k(t) = k∞ <∞, and also y(.) ∈ L2[0,∞).

In the case of (α), the proof is much simpler,
therefore we omit it for limited space. 2

Appendix 2: Proof of Theorem 2

Introduce a positive definitive Lyapunov function
V of the form

V = V1 +
1
2k

p∑

i=1

αi

t∫

t−τi

‖zi(θ)‖2 dθ (21)

By differentiating V , we have

dV

dt
< −S +MyT y + σN(λ)zT y

− 1
2k

p∑

i=1

αi(‖zi(t)‖2 − ‖zi(t− τi)‖2)

− 1
2k2

dk

dt

p∑

i=1

αi

t∫

t−τi

‖zi(θ)‖2 dθ

< −(
k

2
−M)yT y + (σN(λ)− 1)zT y

(22)

Integrating (22) yields

V (t
′
) < V (0)−

t
′∫

0

(
k

2
−M)yT ydτ

+

λ(t
′
)∫

λ(0)

(σN(λ)− 1)dτ

(23)

Suppose k(t) 6∈ L∞[0, t
′
) and λ(t) 6∈ L∞[0, t

′
), the

term − ∫ t
′

0
(k2 −M)yT ydτ will be negative infinity.

The term
∫ λ(t

′
)

λ(0)
(σN(τ)− 1)dτ will take arbitrary

large negative or positive value when λ(t
′
) = ∞

according to Lemma 1 in (Ye and Jiang, 1998).
For example, if we select N(λ) = λ2 cosλ and
λ(0) = 0 without loss of generality, then we

have
∫ λ(t

′
)

0
(σN(τ) − 1)dτ = σ[λ(t

′
)2 sinλ(t

′
) −

2λ(t
′
) cosλ(t

′
) +2 sinλ(t

′
)]−λ(t

′
) and it will take

arbitrary large negative or positive value when
λ(t
′
) = ∞ . So when it takes arbitrary large

negative, the right hand side of (23) will be
negative, hence contradicting the non-negativity
of the left hand side of (23). Therefore, we have
λ(t) ∈ L∞[0, t

′
), k(t) ∈ L∞[0, t

′
). Similar as

before, we have limt→∞ k(t) = k∞ < ∞ and
y(.) ∈ Lm2 [0,∞), which proves the result. 2


