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Abstract: Chemotherapeutics are often treated as having a lumped tumor effect, however,
the growth state and exposure for individual cancer cells ultimately determines the
response of the tumor to treatment. A multi-staged, age structured cell population
balance equation (PBE) capable of cell-cycle tracking was formulated to account for
this limitation. The method of orthogonal collocation on finite elements was used to
decompose the original partial differential and algebraicequation formulation into a
system of nonlinear ODEs with a renewal algebraic equation for age zero cells. The
model was then adapted to include growth inhibitory effectsand drug induced apoptosis
specific to the S-phase for the testing of two theoretical drugs in adjuvant therapy.
Simulations evaluated the delivery of apoptotic drug alone, or both drugs in combination.
Increases in overall tumor reduction resulted from the adjuvant therapy, typical of
results observed experimentally. Additional refinement isnecessary regarding transition,
division, and apoptotic intensity function construction prior to clinical application, but
this model represents a feasible structure for describing distributed tumor progression
with incorporated drug effect.Copyright ©2005 IFAC
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1. INTRODUCTION

Cancer, a disease characterized by an imbalance
between cell growth and apoptosis, is the second
leading cause of death in the United States,
responsible for a quarter of health related fatalities
each year (The American Cancer Society, 2004).
In addition, an expected 1.4 million new cancer
cases are expected during 2004, not including 1
million new cases of carcinomain situ or skin cancer
(The American Cancer Society, 2004). As such,
any improvements in cancer treatment, through drug
discovery, diagnostic capabilities, or dosing regimens,
could have significant impacts on economic cost
and cancer prognosis. Dosing regimen development,
accomplished using past experience, preliminary
pharmacological data, and trial and error methods,
can also be posed in a model-based framework. The
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goal of model-based cancer treatment algorithms is to
minimize some objective, such as final tumor volume
or patient toxicity, over a fixed treatment duration. The
underlying tumor model upon which the algorithm is
based, however, will ultimately limit the theoretically
achievable level of algorithm performance (Morari
and Zafiriou, 1989).

Traditional models for describing tumor growth
include lumped exponential or Gompertz models
(Norton, 1988; Martin and Teo, 1994; Harroldet al.,
2003), where the latter displays saturating growth as
a function of increasing tumor volume. Though both
models accurately describe bulk tumor progression
over fixed time periods, modeled drug effects are
incorporated as affecting the entire population equally.
While this would be true for a chemotherapeutic
capable of inducing apoptosis independent of a cell
state, the majority of cancer drugs display increased
lethality during particular phases of cell growth (so-
called cell-cycle specific chemotherapeutics). Indeed,



failure to incorporate cell cycle phases within a
model can lead to significant controller performance
loss depending on the cycle-specificity of the
chemotherapeutic (Florian Jr.et al., 2004).

Cell-cycle models, displaying either exponential or
saturating growth (Panetta and Adam, 1995; Florian
Jr.et al., 2003), divide a lumped tumor approximation
into multiple lumped cell phases, allowing for drug-
effect inclusion in the appropriate phase of growth.
Such lumped models treat all cells within a given cell
phase as having equivalent drug exposure. Apoptotic
response is often modeled as a bilinear combination
of drug concentration and susceptible population size,
premultiplied by a rate constant corresponding to
drug activity and tumor sensitivity. However, a tumor
is a heterogeneous population of cells with drug
exposures dependent on the surrounding vasculature
for systemically delivered drugs (Brown and Giaccia,
1998). Furthermore, drug-induced apoptosis may be
a function of period of exposure, point of exposure
within a cell phase, or additional intracellular
states. Even radiation therapy displays an apoptotic
effect dually dependent on cell phase (increased
susceptibility during G2/M phase) and cellular oxygen
concentration (increased probability of free radical
formation) (Coleman and Mitchell, 2001).

The only models in the literature which account
for distributed properties in a cell population are
the aptly named, cell population balance models.
This mathematical formulation allows for distributed
internal properties (e.g. mass, age, DNA, protein)
among a population, including the partitioning of
intracellular compounds following cell division. In
addition, this structure can account for intra-phase
tumor population variability, such as distributed
growth rates and different functional formulations of
apoptotic effect. While the original cell population
description dates back to Fredrickson, Ramkrishna,
and Tsuchiya (1967), these models have recently
seen increased use in bio-processes (Ramkrishna,
2000; Zhu et al., 2000; Daoutidis and Henson,
2002; Mantzariset al., 2002; Zamamiriet al., 2002).
Historically, the primary limitations on cell PBE
implementation were the numerical complexity of the
partial integro-differential equations resulting from
model development and difficulty in determining par-
tition and transition functions and single-cell growth
rates. However, with the development of numerical
algorithms capable of accurately approximating PBE
solutions, along with experimental advances for
evaluating cellular properties, PBEs represent a viable
option for modeling intracellular states as distributed
properties among a cell population.

2. MODEL DEVELOPMENT

There are two common formulations for the cell
population balance models which differ by internal
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Fig. 1. The five phases of the cell-cycle:G0 (senes-
cence),G1 (growth), S (DNA replication), G2

(mitotic preparation),M (mitosis). Experimental
methods (fluorescent DNA labeling and flow
cytometry) limit resolution of G0 from G1

(lumped asG) and G2 from M (lumped inM).

coordinates. Models with intracellular properties that
obey mass conservation are referred to as mass
structured while age distribution models differentiate
between cells of different ages within the system.
Both model structures have been explored for
bioreactor applications, specifically the modeling
of yeast cultures for single-phase, single-variable
(Ramkrishna, 2000) and multi-phase, single variable
(Zhu et al., 2000; Daoutidis and Henson, 2002;
Mantzariset al., 2002; Zamamiriet al., 2002) cases
with environmental coupling to the extracellular
environment.

For implementation based on an adapted three cell
cycle model (Figure 1), a mass structured model
would require information on phase transition rates,
a partitioning function for allocating cell properties
following cell division, and single-cell growth rates
for each phase. A model based solely on mass as
the intrinsic variable would be unable to account
for cell distributions within a senescent phase
(G0) where mass accumulation is theoretically zero
(Kastan and Skapek, 2001). While senescent phase
modeling was not included in the present analysis,
selecting an alternative model structure would
maintain model versatility for future work without
requiring the inclusion of additional internal variables
(and additional partitioning and accumulation rates).
Finally, a mass structured cell-cycle model does not
allow for explicit period of drug exposure calculation.

Age based models offer several advantages over mass
structured cell population models even though age is
not an available measure from a cell population. First,
single cell rates of change for age correspond to unity,
eliminating the need for experimentally determining
three growth equations. Second, mass structured
models formulate as partial integro-differential equa-
tions, a function of property partitioning following



cell division, while age structured models result in
simpler partial differential equations with an integral
boundary condition. This integral boundary condition
results from the accumulation of newborn cells all of
which possess an initial age of zero. Subsequently,
calculation of a partition function is no longer required
since age is not partitioned following cell division.
Finally, tracking the internal property, age, allows for
direct calculation of the period of drug exposure for
any portion of the population. Drug-kill rates need
not be constant throughout a cell phase, representative
of complex interactions between a chemotherapeutic,
intracellular targets, and the induction of apoptosis.
For classes of problems where the dynamic effect of
interest (tumor-kill) is period or point of exposure
dependent, an age structured model is both less
complex and more relevant.

3. CELL CYCLE TUMOR GROWTH PBE

The current model was adapted from the age
structured yeast model developed by Zamamiriet al.
(2002). For the three cell phases,G, S, and M, the
cell phase population density is given byNG, NS, and
NM, respectively. The cell cycle PBE was constructed
with cell-cycle specific drug effects in the S-phase,
though the model can be adapted for cycle-specificity
in any phase. As cycle-specific chemotherapeutics can
inhibit progression through a cell cycle phase (e.g.
cytarabine (Halickaet al., 1997)) or directly induce
apoptosis within a cycle (e.gcamptothecin, irinotecan
(Halickaet al., 1997)), both effects were incorporated
within the model structure. Here, drug dosing is
modeled as a discrete input (i.e. ingesting a pill)
which must be absorbed from the gut (Equations (4)
and (6)) before reaching the plasma (Equations (5)
and (7)). The complete PBE, with coupled drug effect
formulation, is given by the following equations:

∂NG(a,t)
∂ t

+
∂NG(a,t)

∂a
=−ΓG(a)NG(a,t) (1)

∂NS(a,t)
∂ t

+
∂NS(a,t)

∂a
=−ΓS(a,D1(t))NS(a,t)

−ΓE(a,E1(t))NS(a,t)(2)

∂NM(a,t)
∂ t

+
∂NM(a,t)

∂a
=−ΓM(a)NM(a,t) (3)

dE0(t)
dt

=−kE0E0(t)+uE(t) (4)

dE1(t)
dt

=−kE1E1(t)+kE0E0(t)(5)

dD0(t)
dt

=−kD0D0(t)+uD(t) (6)

dD1(t)
dt

=−kD1D1(t)+kD0D0(t)(7)

Here,a is the period of time a cell has resided within
a given phase.D1(t) is the concentration of the drug
inhibiting transition from S to M phase,E1(t) is the

concentration of the apoptosis-inducing drug,E0(t)
and D0(t) represent drug concentrations within the
gut anduD(t) and uE(t) are doses of the delaying
and eliminating drugs, respectively. The transition
functions out of cell phaseG and M are ΓG(a) and
ΓM(a), respectively, andΓS(a,D1(t)) is the S-phase
transition rate which is both a function of age and the
concentration of the transition inhibiting drug. Finally,
ΓE(a,E1(t)) is the S-phase-specific apoptotic effect
which is a function of age and the concentration of the
eliminating drug. Equation (2) reflects drug dependent
effects on tumor-kill and tumor growth.

The G-phase transition function,ΓG(a), and M-phase
division functionΓM(a), were assumed to have the
following forms:

Γi(a) =











0 a≤ aci

βi
a−aci

(mi−1)aci
, aci ≤ a≤ miaci

βi miaci ≤ a

(8)

Here,aci is the critical age during cell phasei (wherei
= G or M) representing the minimal age necessary for
phase transition or cell division onset.βi represents
the maximum transition rate for the cell phase andmi

defines the sharpness of the transition function subject
to the additional constraint,mi > 1, to ensure positive
growth rates.

The S-phase transition rate,ΓS(a,D1(t)) has the
modified form:

ΓS(a,D1(t)) =










0 a≤ ancS

βS
a−ancS

(mS−1)ancS
, ancS ≤ a≤ mSancS

βS mSancS ≤ a

(9)

ancS(acS,D1(t)) = acS(1+
KMD1(t)

D1(t)+mD
) (10)

The new critical age allowing for S-phase transition,
ancS, is a function of drug-free critical age,acS, and the
transition inhibiting drug concentration,D1(t). The
parametermD affects the sharpness of the transition
function with respect to drug concentration such
that higher values ofmD reflect a more gradual
increase in transition function value.βS and mS are
equivalent to their G- and M-phase counterparts. The
S-phase transition function is shown graphically in
Figure 2. The G- and M-phase functions are identical
to theD1(t) = 0 case. The S-phase specific apoptosis
function was set toΓE(a,E1(t)) = kAaE1(t) where
kA is the apoptotic kill rate. The apoptotic intensity
function was chosen so that cells in later S-phase
would be more susceptible to a drug dose than those
cells early in S-phase, representative of lethal DNA
damage near the late S-phase checkpoint (Kastan and
Skapek, 2001).

Finally, the three age zero boundary conditions, which
account for phase transition or division, are given by:



0
2

4
6

0

0.5
0

2

4

6

Age (days)D
1
(t) (ng/mL)

T
ra

ns
iti

on
 In

te
ns

ity
 Γ

S
 (

1/
da

y)

Fig. 2. Representation of the S-phase transition
rate as a function of transition inhibiting drug
concentration,D1(t), and agea.

NG(0,t) =

∫ ∞

0
2ΓM(a)NM(a,t)da (11)

NS(0,t) =

∫ ∞

0
ΓG(a)NG(a,t)da (12)

NM(0,t) =
∫ ∞

0
ΓS(a,D1(t))NS(a,t)da (13)

A summary of the parameters used for simulations can
be found in Table 1. The parameters in the present
study were selected to characterize a tumor with an
approximate doubling time of 9 days, representative
of Ht29 (a human colon carcinoma xenograft) tumor
growth (Derenziniet al., 2000).

4. CELL-CYCLE PBE SIMULATION

The cell-cycle PBE constructed above cannot be
solved analytically; however, a plethora of numerical
methods for solving problems of this class can be
found in the literature. Solution techniques include
finite difference (Mantzariset al., 2001), method of
weighted residuals (Rice and Do, 1995; Ramkrishna,
2000; Mantzariset al., 2001) and finite element
techniques (Mantzariset al., 2001). For the present
problem, orthogonal collocation over finite elements
was employed (Rice and Do, 1995). This approach
divides the range of interest into a set of element
subdomains. Orthogonal collocation, a method of
weighted residuals solution technique, is then applied
over each element. This method, which combines
both method of weighted residual and finite element

Table 1. Model, transition function, divi-
sion, and apoptosis function parameters.

Parameter Value Parameter Value

acG 3.75 day βG 4 1
day

acS 2.4 day βS 6 1
day

acM 1.5 day βM 6 1
day

kD0 0.75 1
day mG 1.6

kD1 1.5 1
day mS 5

kE0 0.5 1
day mM 2.4

kE1 0.75 1
day mD 0.15 ng

mL
kA 4 1

day KM 2

techniques, should outperform finite difference so-
lutions in terms of accuracy as information from
all collocation points within an element contribute
to derivative calculations. Furthermore, orthogonal
collocation on finite elements allows for the tailored
arrangement of elements within the discretized
domain such that more elements can be included in
areas where transition, division, or apoptotic intensity
functions may display extreme alterations in function
value (Rice and Do, 1995).

Applying the method of weighted residuals reduces
the cell-cycle PBE into a coupled set of ODEs:

d
dt

NG = −(AG + ΓΓΓGGG)NG −AG0NG0 (14)

d
dt

NS = −(AS + ΓΓΓSSS+ ΓΓΓEEE)NS −AS0NS0 (15)

d
dt

NM = −(AM + ΓΓΓMMM)NM −AM0NM0 (16)

In summary, each cell phase age domain was dis-
cretized into a set of elements. Each element was then
divided into a number of internal collocation points
with two additional collocation points corresponding
to the element boundaries for a total ofP, Q,
and R collocation points within phasesG, S, and
M, respectively. Collocation point location within
each cell phase was represented byaGp, aSq, and
aMr with the cell phase density at each collocation
point equal toNGp, NSq, and NMr . Next, the partial
derivative of each cell phase population with respect
to age was calculated as a linear combination
from all the collocation points within an element
at each collocation point within the system. The
corresponding first derivative weight matrices are
given byAG, AS, andAM while ΓΓΓGGG andΓΓΓMMM represent
diagonal matrices with valuesΓΓΓG(((ppp,,, ppp))) = ΓG(aGp)
andΓΓΓM(((rrr,,, rrr))) = ΓM(aMr), respectively. Similarly,ΓΓΓSSS

and ΓΓΓEEE are defined asΓΓΓS(((qqq,,,qqq))) = ΓS(aSq,D1(t))
and ΓΓΓE(((qqq,,,qqq))) = ΓE(aSq,E1(t)), respectively. These
coupled ODEs apply to all collocation points within
each phase excluding the age zero populations,NG0,
NS0, andNM0. Following age discretization, the cell
density within each cell phase at age zero is given by
the following algebraic relationships:

NG0(t) =
R

∑
r=1

2wMr ΓM(r, r)NMr (17)

NS0(t) =
P

∑
p=1

wGpΓG(p, p)NGp (18)

NM0(t) =
Q

∑
q=1

wSqΓS(q,q)NSq (19)

Here, the previous integral boundary conditions
(Equations (11), (12), and (13)) have been approxi-
mated by Gaussian quadrature (Rice and Do, 1995).
Quadrature weights for the summations are given by
wGp, wSq, andwMr . The eliminating and delaying drug
equations remain unchanged (Equations (4)- (7)).
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Fig. 3. Cell distribution within G-phase (left), S-phase (center), and M-phase (right) in the absence of treatment.

5. SIMULATION RESULTS

Model simulations were performed in MATLAB (©,
2004, The Mathworks, Natick, MA) using the function
dae4o.m(Roberts, 2000).

Each of the three phases was separated into 18
elements with 2 internal collocation points apiece,
amounting to 58 collocation points per phase.
Approximately half of the elements are contained
within the transition function region, (aci − 0.05) to
miaci , with two elements for all ages beyond. The rest
of the elements are placed in the region between 0 and
(aci − 0.05). Tighter element allocation begins prior
to increases in transition intensity functions to ensure
that any sharp increases in value will be captured.

The cell-cycle PBE was simulated for the test case of
no drug delivery. Simulations were performed for 42
days with initial conditions:

NG(a,0) = 0.08e
−(a−0.27)2

0.16 (20)

NS(a,0) = 0 (21)

NM(a,0) = 0 (22)

Population distributions for each phase (G, S, andM)
can be found in Figure 3. Starting at time zero with all
cells located within G-phase, the progression of the
population can be observed through each of the cell
phases.

0 10 20 30 40
10

0

10
1

T
ot

. T
um

or
 V

ol
. (

m
m3 )

0 10 20 30 40

10
0

Time (days)

N
i T

um
or

 V
ol

. (
m

m3 )

Fig. 4. Total population volume (top) and individual
phase population volumes (bottom) forNG

(green, dashed),NS (blue, dash-dot), andNM (red,
dotted) in mm3.

Gradually, the distribution of cells spreads out over all
three phases, eliminating the semi-discrete increases
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Fig. 5. Tumor progression versus time for total tumor

volume (top) and S-phase volume (bottom).
Apoptotic drug, E, was dosed every 7 days
(vertical lines) starting at day 7 (dashed). Co-
administration with transition inhibitor,D, (solid)
is shown for comparison.

in population seen every 9 days in Figure 4 (top).
While the overall tumor growth rate becomes nearly
exponential by 35 days, oscillations continue to persist
with respect to individual cell phase populations
(Figure 4, bottom).

To evaluate the model response to drug effect,
simulations were performed for two different dosing
regimens. In the first case, doses of 10 mg of
apoptotic drug were administered every seven days,
starting on day 7, until day 35. The second case
has co-administration of both drugs (10 mg of
transition inhibiting and apoptosis inducing) on the
same schedule. The simulation results are shown in
Figure 5.

Final tumor volume predicted for the adjuvant
treatment versus drugE alone was 48 vs. 894 mm3,
or a 19-fold reduction in final tumor volume. For
comparison, simulations for untreated tumor growth
or treatment with only drugD returned final tumor
volumes of 7278 mm3 and 5578 mm3, respectively
(not shown). The reduction in final volume for the
adjuvant case partially resulted from drugD inhibiting
progression rate into M-phase, thereby allowing
for a greater susceptible total S-phase population.
Consequently, cells remained in S-phase for increased
periods of time, and as the tumor-kill term was
formulated as a function of a cell age, the upper
age portion of susceptible cells experienced a much
greater apoptotic rate than would be achievable under
normal phase progression.



6. SUMMARY

An age distributed cell-cycle population balance
equation model was constructed to capture tumor
growth. The assumed cycle transition and division
intensity functions were capable of simulating near-
exponential tumor growth (doubling time of 9 days)
while maintaining information regarding population
age within each individual cell phase. Models for
growth inhibition and apoptotic effects for two
theoretical drugs specific to the S-phase of the cell
cycle were also developed and incorporated into the
PBE. Simulations were able to reproduce typical
drug-growth inhibitor interaction while retaining
cell phase information following single-agent and
co-delivery (Halicka et al., 1997). Overall, the
model produced stable results and was capable
of tracking population progression through each
phase. Additional experimental data are necessary to
formulate biologically accurate transition, division,
and apoptotic kernels for application to preclinicalin
vivosystems.
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