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Abstract: This paper deals with the optimal control problem for systems with
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1. INTRODUCTION

Dealing with constraints on the state and/or
input variable is one of the fundamental tasks
in control synthesis problems and, hence, has
drawn much attention of the dynamics and
control community, since it is closely connected
with system performance and, thus, fulfillment of
given system specifications. Recently, a number
of modern model-based control design methods
sought to deal with system constraints directly
rather than through their implicit incorporation
via penalty or barrier functions. Such is the case
for Model Predictive Control, where part of the
attraction of the approach is the introduction
of constraints into the formulation without com-
promising the scalar control objective function
(Maciejowski, 2002).

From the viewpoint of its origin, a state/input
constraint can be a physical constraint, physically
imposed upon the system state and/or input, or a
design constraint, deliberately imposed to avoid
undesirable states by using corrective control
action. Of the various kinds of constraints, this
paper focuses only on a special case: equality state
constraints (which are also known as algebraic
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equation state constraints.) In the case of physical
state equality constraint, it is always possible to
reduce the system parametrization to fit in a
lower dimensional state space. For robotic systems
with (hard) holonomic constraints, McClamroch
and Wang (1988) derived stable controllers by
decomposing the constrained system into a re-
duced order dynamic system and a static system.
But, sometimes keeping the non-reduced state
space has also good reasons as described in
Hemami and Wyman (1979), where a general
dynamic model for biped locomotion was derived
in a non-reduced state equation form and a pole-
assignment algorithm was devised for a linearized
state equation, which, in general, does not satisfy
the hard constraint without control input. Hence,
their design methodology can be applied for the
system having design constraints. That is, for a
system represented by

ẋ = Ax + Bu,

they found, so called, Xc-constrained linear feed-
back gain K such that

(A−BK)(Xc) ⊂ Xc

where Xc is a given constraint subspace. This pole-
assignment problem was also studied in Yu and
Müller (1994) in which a method of designing
a pole-assignment controller was developed for



constraining the state of a system, firstly by
finding a suitable form of feedback gain and then
by designing a specific pole-assignment controller.
Existence conditions for the pole-assignment con-
troller were also studied. Similarly to the above-
mentioned equality (or algebraic) constraint ap-
proach, the so-called stabilized constraint method
was considered by Hahn (1992) and Yu et al.
(1996). Here, instead of considering algebraic
constraint relations, the stabilized constraints
having stable stationary solutions were used,
where the limiting solution is identical to the
algebraic constraints. Hahn (1992) studied a
pole-assignment controller and Yu et al. (1996)
designed a linear quadratic (LQ) regulator for
systems with stabilized constraints.

In the case of the LQ regulator problem, we expect
that the state equality constraints cause reduction
of the allowable input space which, in turn,
produces a performance degradation in terms of
optimal performance index, compared to that of
the unconstrained LQ regulator problem. This
paper studies this problem. First, we study the
existence conditions for Xc-constrained feedback
input and then find all Xc-constrained feedback
gains. Then, we derive the constrained optimal
performance index and then compare it with that
of the unconstrained case. Also, we extend this
approach to the case of systems with stochastic
disturbances.

2. CONSTRAINED CONTROL

We consider the following problem: for a given
discrete system

xk+1 = Axk + Buk (1)
with a design constraint

xk ∈ Xc = {x : Dx = 0} , (2)
find the optimal control law

uk = −Kkxk

which minimizes

J = xT
NQNxN +

N−1∑

k=0

[
xT

k Qcxk + uT
k Rcuk

]
(3)

where xk ∈ Rn and uk ∈ Rm, and it is assumed
that QN ≥ 0, Qc ≥ 0, Rc > 0, and D ∈ Rc×n

has full row rank. If D is not of full row rank, there
exist redundant state constraints. In that case, we
can simply remove linearly dependent rows from
D.

For this, first, we have to find the set of all
K ∈ Rm×n

KXc ,
{
K : (A−BK)(Xc) ⊂ Xc

}
(4)

and one says that such a feedback map K : X 7→
U is Xc-constrained. It can be shown (Hemami
and Wyman, 1979) that the set KXc of all Xc-
constrained feedbacks for (A,B) is an affine sub-
set of the set of all linear state-variable feedbacks
K. For later use, we need the following Lemma 1.

Lemma 1. (Skelton et al. (1998), Theorem 2.3.1).
Let A, X, B, and Y be matrices with consistent
dimensions. Then the following statements are
equivalent:

(i) The equation AXB = Y has a solution X.
(ii) A, B and Y satisfy AA†YB†B = Y.
(iii) A, B and Y satisfy

(I−AA†)Y = 0, Y(I−B†B) = 0.

In this case, all solutions are

X = A†YB† + G−A†AGBB† (5)

where G is an arbitrary matrix with consistent
dimension.

The following Lemma 2 provides equivalent exis-
tence conditions for the non-empty set KXc .

Lemma 2. The following statements are equivalent:

(i) KXc is non-empty.
(ii) A(Xc) ⊂ Xc + B(U)
(iii) For any basis matrix Z of the subspace Xc,

DBKZ = DAZ. (6)

(iv) PN (DB)T DAZ = 0
(v) There exists a c× c matrix H such that

HD = D(A−BK).

In this case, all Xc-constrained feedback gains are
given by

K = G +
[
G0 −PR(DB)T G

]
PN (D) (7)

where G is an arbitrary matrix with consistent di-
mension and G0 , (DB)†DA. Here PR(DB)T =
(DB)†(DB), PN (DB)T = I − (DB)(DB)†, and
PN (D) are the orthogonal projectors onto the row
and the left null space of DB, the null space of
D, respectively.

PROOF. Proofs for (i) ↔ (ii) and (i) ↔ (v)
are given in Wonham (1979) and Hemami and
Wyman (1979), and Castelan and Hennet (1992),
respectively. Proof for (ii) ↔ (iii) is very similar
to the proof for (i) ↔ (ii), which can be easily
verified. The condition (iv) is obtained from (ii) or
(iii) of Lemma 1 by applying it to (6) and also we
obtain the all Xc-constrained feedback (7) using
(5). 2

Remark 1. If (DB) is invertible or has full row
rank, PN (DB)T = I − (DB)(DB)† = 0. Then,
the condition (iv) of Lemma 2 is always satisfied.
Therefore, KXc is non-empty. Specially, if (DB) is
invertible, the feedback gain becomes a fixed one

uk=−Kxk =−KPN (D)xk

=−(DB)−1DAPN (D)xk.

Hence, in this case, we cannot change control
law design and need to change design constraints
(D) or system input matrix (B), if this unique
controller does not show desirable results.

Remark 2. The feedback gain (7) guarantees xk ∈Xc for all k, provided that the initial state vector
x0 is chosen from the constraint set Xc. Now,
suppose that xk /∈ Xc. Then, from (1), (7) and



the condition (iv) of Lemma 2, it can be shown
that

D
[
xr

k+1 − (A−BG)xr
k

]
= 0

where xr
k is theR(DT )-component of xk. Therefore,

there exists a λk ∈ Xc = N (D) such that

xr
k+1−PR(DT )(A−BG)xr

k=PN (D)(A−BG)xr
k+λk.

(8)
Since the left-hand side of (8) is in the row space
of D and the right-hand side is in the null space
of D, we have

xr
k+1 = PR(DT )(A−BG)xr

k.

Therefore, for stable (A − BG) (which also
implies that PR(DT )(A − BG) is also stable),
xr

k → 0, asymptotically. This means, for an initial
condition not in the constraint set, the system
satisfies the constraint asymptotically.

3. CONSTRAINED LQ OPTIMAL CONTROL

For the system (1) to be constrained in Xc, the
state feedback gain must be of the structure (7)
and, for any xk ∈ Xc, the input uk is given by

uk = −
[
G + G0 −PR(DB)T G

]
PN (D)xk,

= −G0 xk + PN (DB) (−Gxk)︸ ︷︷ ︸
,ūk

(9)

where PN (DB) = I − PR(DB)T is the orthogonal
projector onto the null space of DB. Therefore,
with (9), the state equation (1) can be rewritten
as

xk+1 = Āxk + B̄ūk (10)

where Ā , (A − BG0) and B̄ , BPN (DB). It
is easily shown that N (D) is Ā-invariant (if the
condition (iv) of Lemma 2 is satisfied) and also we
can see that the column space of B̄ lies in N (D).
Therefore, the new system representation (10)
corresponds to a physically constrained system.
With the new input ūk, we can reconstruct the
performance index (3) as

J=xT
NQNxN+

N−1∑

k=0

[
xT

k Q̄cxk+2xT
k H̄cūk+ūT

k R̄cūk

]

(11)
where

Q̄c , Qc + GT
0 RcG0

H̄c , −GT
0 RcPN (DB)

R̄c , PN (DB)RcPN (DB).

(12)

Note that the new weighting matrix R̄c becomes
non-negative definite (singular) for a given pos-
itive definite original weighting matrix Rc due
to the projector PN (DB). Therefore, in order to
find the optimal feedback gain G∗ such that
ū∗k = −G∗xk minimizes J , we have to solve a
singular optimal control problem. However, for
any discrete-time linear-quadratic optimal control
problem, regardless of the singularity or otherwise
of any matrices in the cost, the associated Riccati
equation is well defined and may be solved in a
straightforward manner to yield a solution of the
optimal control problem (Clements and Ander-
son, 1978), which is summarized by the following
definition and lemma:

Definition 1. The set of admissible weighting ma-
trices, denoted by S, is the set of n×n symmetric
matrices P such that B̄T PB̄ + R̄c ≥ 0 and
N (B̄T PB̄ + R̄c) ⊂ N (ĀT PB̄ + H̄c).

Lemma 3. [Clements and Anderson (1978)] The
optimal control problem for the system (10) with
the performance index (11) has a solution on
[0, N ] for terminal weighting matrix QN if and
only if the n× n symmetric matrix Pk+1 ∈ S for
each k = 0, · · · , N −1, where Pk is defined by the
recursion, with PN = QN ,

Pk = ĀT Pk+1Ā + Q̄c

−(
ĀT Pk+1B̄+H̄c

)
R†

B

(
ĀT Pk+1B̄+H̄c

)T

where RB , B̄T Pk+1B̄ + R̄c. If Pk is so defined,
then the control sequence U∗N−1

l defined by

u∗k = −R†B
(
ĀT Pk+1B̄ + H̄c

)T
xk

achieves the infimum of J for each k = l, · · · , N−1.
That is, with U∗N−1

l =
[
u∗l , · · · ,u∗N−1

]
, we have

J∗N−l(xl, S) = JN−l(xl,U∗N−1
l ,S) = xT

l Plxl.

It can be easily verified that, for the minimization
problem with the new performance index shown
in (11) and the system matrices in (10), any n×n
symmetric matrix P is in the admissible set S
and we can apply Lemma 3, from which we obtain
Theorem 1.

Theorem 1. For the system given in (1) with the
state equality constraints (2) which satisfies one
of conditions of Lemma 2, and the performance
index (3), the solution to the LQ control problem
is given by the optimal control law in the following
state feedback form:

uc
k = −G0 xk + PN (DB)ūc

k

Here ūc
k satisfies

ūc
k=−(

B̄T Pc
k+1B̄+R̄c

)†(
ĀT Pc

k+1B̄+H̄c

)T
xk

where, with Pc
N = QN ,

Pc
k = ĀT Pc

k+1Ā + Q̄c

−(
ĀT Pc

k+1B̄+H̄c

) (
B̄T Pc

k+1B̄+R̄c

)†

×(
ĀT Pc

k+1B̄+H̄c

)T
for k=0, · · · , N−1.

(13)

The optimal value of the performance index is
given by Jc = xT

0 Pc
0x0.

By using (10) and (12), the control RDE (13) can
be also written as
Pc

k = AT Pc
k+1A + Qc + ∇c

k

−AT Pc
k+1B

(
BT Pc

k+1B+Rc

)−1
BT Pc

k+1A
T

(14)

where

∇c
k , (Kc

k −G0)
T Ωc

k (Kc
k −G0) (15)

with

Kc
k ,

(
BT Pc

k+1B + Rc

)−1
BT Pc

k+1A

G0 , (DB)†DA

Ωc
k ,

[
R̂B − R̂BR̂(2)

B R̂B

]
.

(16)



Here R̂B ,
(
BT Pc

k+1B + Rc

)
and R̂(2)

B represents
a (2)-inverse of R̂B which satisfies the second
condition of the Moore-Penrose inverse, viz.

R̂(2)
B , PN (DB)

[
PN (DB)R̂BPN (DB)

]†
PN (DB)

=
[
PN (DB)R̂BPN (DB)

]†
.

(17)
It can be shown that

R̂B ≥ R̂BR̂(2)
B R̂B . (18)

Therefore, comparing (14) with the Riccati equa-
tion that would be obtained for unconstrained LQ
optimal control

Pu
k = AT Pu

k+1A + Qc

−AT Pu
k+1B

(
BT Pu

k+1B + Rc

)−1
BT Pu

k+1A
T

(19)
yields

Pu
k ≤ Pc

k, for all k.

Therefore, from the monotonicity property of the
Riccati Difference Equation (RDE) (Bitmead and
Gevers, 1991), we obtain the following corollary.

Corollary 1.

Ju = xT
0 Pu

0x0 ≤ xT
0 Pc

0x0 = Jc. (20)

Corollary 1 tells us that the optimal performance
index of the constrained case is greater than
that of unconstrained case, due to the design
constraints on state variables which are given by
(2). This is a formal derivation of a self-evident
property that constraining the admissible control
set worsens performance.

4. STOCHASTIC CONSTRAINED OPTIMAL
CONTROL

Now we consider the optimal control of stochastic
systems

xk+1 = Axk + Buk + wk (21)

with state equality constraints represented (2).
Here the process noise wk is assumed to have a
gaussian distribution of zero-mean and covariance
Qe. Completing the squares as in Åström (1970),
the following Lemma 4 is obtained which will be
used for generalizing the result of deterministic
LQ control of Theorem 1.

Lemma 4. Assume that the RDE (14) with the
initial condition Pc

N = QN has a solution which
is non-negative definite for k ∈ [0, N ]. Let xk be
the solution of the stochastic difference equation
(21). Then,

Jsto , xT
NQNxN +

N−1∑

k=0

(
xT

k Qcxk + uT
k Rcuk

)

= xT
0 Pc

0x0 +
N−1∑

k=0

[
wT

k Pc
k+1(Axk + Buk)

+(Axk+Buk)T Pc
k+1wk+wT

k Pc
k+1wk+Vk

]

(22)

where

Vk = uT
k R̂Buk + (uk + Kkxk)T R̂BKc

kxk

+ xT
k KcT

k R̂B (uk + Kkxk)− xT
k KT

k R̂BKkxk.
(23)

Here the matrix Kk is defined by

Kk = G0 + R̂(2)
B R̂B (Kc

k −G0) . (24)

Although we have already analyzed the deter-
ministic LQ case in Section 3, we derive the re-
sult again here now using Lemma 4, since this
procedure will be used for the incomplete state
information case in Section 4.2.

4.1 Deterministic Case

For a deterministic system, wk ≡ 0. Thus from
(22) of Lemma 4 we have

Jsto=J=xT
NQNxN+

N−1∑

k=0

[
xT

k Qcxk + uT
k Rcuk

]

= xT
0 Pc

0x0 +
N−1∑

k=0

Vk.

(25)
Now in order to incorporate the constraint (2)
into the process of minimizing J given in (25),
let us express J in terms of ūk by using the Xc-
constrained feedback input form (9). Then, we
obtain

J(ūk) = xT
0 Pc

0x0 +
N−1∑

k=0

V̄k(xk, ūk) (26)

where

V̄k(xk, ūk) = xT
k F̃xk + 2xT

k H̃ūk + ūT
k G̃ūk

with

F̃ = GT
0 R̂BG0 + KT

k R̂BKc
k + KcT

k R̂BKk

−KT
k R̂BKk−GT

0 R̂BKc
k−KcT

k R̂BG0

H̃ = GT
0 R̂BPN (DB) + KcT

k R̂BPN (DB)

G̃ = PN (DB)R̂BPN (DB).

(27)

For minimizing J(ūk) or V̄k(xk, ūk) with respect
to ūk, we use the following Lemma 5.

Lemma 5. [Clements and Anderson (1978)]
Consider the quadratic form q(z,v) = zT Fz +
2zT Hv + vT Gv for matrices F = FT , G =
GT and H and vectors z and v of arbitrary
but consistent dimensions, and define q∗(z) =
infv q(z,v). The following three conditions are
equivalent:

(i) q∗(z) > −∞ for each z
(ii) G ≥ 0, N (G) ⊂ N (H)
(iii) there exists a symmetric matrix X such that

[
F−X H
HT G

]
≥ 0. (28)

Moreover, if any one of the above conditions holds,
then (iii) is satisfied by X∗ = F − HG†HT . In



addition, X∗ ≥ X for any other X satisfying (iii).
Finally if for each z we set

v∗ = −G†HT z, (29)
then

q∗(z) = q(z,v∗) = zT X∗z. (30)

It is easily verified that G̃ ≥ 0, N (G̃) ⊂ N (H̃)
and hence Lemma 5 can be used for minimizing
V̄k(xk, ūk). From (30) together with (27) and (24),
we arrive at

V̄ ∗
k (xk, ū∗k) , min

ūk

V̄k(xk, ūk) = xT
k X∗xk = 0,

(31)
since X∗ = F̃− H̃G̃†H̃T = 0, for which (17) was
used. Using (29), the optimal control ū∗k is given
by

ū∗k = −G̃†H̃T xk

= −R̂(2)
B PN (DB)R̂B(Kc

k−G0)xk.

Hence,
u∗k = −G0xk + PN (DB)ū∗k

= −
[
G0 + R̂(2)

B R̂B(Kc
k −G0)

]
xk

= −Kkxk.

By substituting (31) into (26), we obtain the same
results of Theorem 1.

4.2 Incomplete State Information

The system we now consider is driven also by the
process noise wk as shown in (21) and the state
information is available only from a measurement
given by

yk = Cxk + vk (32)
where vk is gaussian with zero-mean and covari-
ance of Re. Therefore, in this case, we cannot
constrain the state xk in Xc since the exact state
information is not available for the Xc-constrained
feedback such as uk = −Kkxk. If we use the
Kalman predictor x̂k , E{xk|yk−1} for the feed-
back

uk = −Kkx̂k,
we have xk+1 = Axk − BKkx̂k + wk which is
generally not in Xc. However, taking expectation
yields

E{xk+1} = (A−BKk)E{xk},
resulting in E{xk+1} ∈ Xc for any E{x̂k} =
E{xk} ∈ Xc. Therefore, for the case of incomplete
state information, we can constrain only the
expected value of the state in the constrained
subspace by using the Xc-constrained feedback
obtained for the corresponding deterministic sys-
tem. In addition to this, it can be shown that the
Xc-constrained feedback gain form 2

K = G +
[
G0 −PR(DB)T G

]
= G0 + PN (DB)G

(33)
minimizes the expectation of the squared constraint
error, which is defined as

e(Lk) , E{
tr

∥∥Dxk+1

∥∥2∣∣yk−1

}
, (34)

2 The only difference between (33) and (7) is the absence
of the projector PN (D).

with the assumption that the covariance of
the estimate of the Kalman predictor X̂k =
E{x̂kx̂T

k |yk−1} is non-singular. Here, Lk represents
any state estimate feedback gain.

By taking the expectation of the performance
index given by (22), we find, with the assumption
that wk is independent of xk and uk,

E
{

Jsto

}
=E

{
xT

NQNxN+
N−1∑

k=0

[
xT

k Qcxk+uT
k Rcuk

]}

= E
{
xT

0 Pc
0x0+

N−1∑

k=0

[
wT

k Pc
k+1wk+Vk

]}

(35)
where Vk is given in (23). For finding the minimum
of the left-hand side of (35), we use following
lemmas.

Lemma 6. [Åström (1970)] Let E(·)|y[(·)|y] denote
the conditional mean given y. Assume that the
function f(u,y) = Ex|y[J(x,y,u)|y] has a unique
minimum with respect to u ∈ U for all y ∈ Y .
Let u∗(y) denote the value of u for which the
minimum is achieved. Then,

min
u(y)

Ex,y

{
J(x,y,u)

}
= Ex,y

{
J(x,y,u∗(y))

}

= Ey
{

min
u
Ex|y

[
J(x,y,u)

∣∣∣y
]}

.

Lemma 7. [Åström (1970)] Let x be normal with
mean m and covariance R. Then,

E{xT Sx} = mT Sm + tr[SR].

Since in (35) only Vk depends on the input uk and
the state xk , we consider only Vk for finding the
optimal feedback minimizing (35).

Let us Denote

f(uk,yk−1) , Ex|y{Vk|yk−1}
= Ex|y

{
uT

k R̂Buk+(uk+Kkxk)T R̂BKc
kxk

+ xT
k KcT

k R̂B(uk+Kkxk)−xT
k KT

k R̂BKkxk

∣∣∣yk−1

}
.

Then, by using Lemma 7, we have

f(uk,yk−1) = uT
k R̂Buk + (uk+Kkx̂k)T R̂BKc

kx̂k

+ x̂T
k KcT

k R̂B(uk + Kkx̂k)−x̂T
k KT

k R̂BKkx̂k

+ tr
[(

KT
k R̂BKc

k+KcT

k R̂BKk−KT
k R̂BKk

)
Σk

]

where Σk satisfies the Kalman predictor Riccati
equation

Σk+1 = AΣkAT + Qe

−AΣkCT (CΣkCT + Re)−1CΣkAT .
(36)

To incorporate the constraint E{xk} ∈ Xc, we use
the input of the form

uk = −G0x̂k + PN (DB)ūk.

Then, f(uk,yk−1) becomes a function of ūk

f(uk,yk−1) = f(ūk,yk−1) = Ṽ (ūk,yk−1)

+ tr
[(

KT
k R̂BKc

k+KcT

k R̂BKk−KT
k R̂BKk

)
Σk

]



where
Ṽ (ūk,yk−1) = x̂T

k F̃x̂k + 2x̂T
k H̃ūk + ūT

k G̃ūk

with F̃, H̃ and G̃ given by (27). Similarly to the
deterministic case of Section 4.1, the minimum of
Ṽ (ūk,yk−1) is zero, which is obtained by

ū∗k = −R̂(2)
B PN (DB)R̂B(Kc

k −G0)x̂k.

Therefore, by applying Lemma 6 and with (35)
and

E
{
xT

0 Pc
0x0

}
= x̄T

0 Pc
0x̄0 + tr

[
Pc

0Σ̄0

]

E
{
wT

k Pc
k+1wk

}
= tr

[
Pc

k+1Qe

]
,

(37)

we obtain Theorem 2. Here x0 has a gaussian
distribution with mean x̄0 and covariance Σ̄0.

Theorem 2. Consider the state (21) and measure-
ment equation (32). Let the admissible control
strategies be such that uk is a function of yk.
Assume that Pc

k-Riccati equation (14) with initial
condition Pc

N = QN has a solution Pc
k such that

Pc
k is symmetric with Pc

k ∈ S. Then there exists
a unique admissible control strategy

uk = −Kkx̂k

which minimizes the expected performance index
(35), satisfying equality constraints E{Dxk} =
0 and also minimizing the expectation of the
squared constraint error given by (34). Here, Kk

is given by (24). The minimal value of expected
performance index is given by

E{Jc
sto} , min

E{xk}∈N
E{J} =

x̄T
0 Pc

0x̄0 + tr
[
Pc

0Σ̄0

]
+

N−1∑

k=0

tr
[
Pc

k+1Qe

]

+ tr
[(

KT
k R̂BKc

k + KcT

k R̂BKk −KT
k R̂BKk

)
Σk

]

(38)
where Σk satisfies (36).

By following the similar approach used for deriv-
ing (38), we can obtain the optimal performance
index for the unconstrained case

E{
Ju

sto

}
= x̄T

0 Pu
0 x̄0 + tr

[
Pu

0Σ̄0

]

+
N−1∑

k=0

tr
[
Pu

k+1Qe +
(
KuT

k R̂u
kK

u
k

)
Σk

] (39)

where R̂u
k , BT Pu

k+1B + Rc. Using optimality
yields the following stochastic version of Corollary
1.

Corollary 2. For the stochastic system repre-
sented by (21) and (32) with the same state and
control weighting matrices, the following perfor-
mance ordering holds.

E{
Ju

sto

} ≤ E{
Jc

sto

}
(40)

5. CONCLUDING REMARKS

In this paper, the control problem with state
linear equality constraints was considered, first by

finding the existence conditions for linear feedback
gains and then determining all such gains. By
using the results of discrete time singular optimal
control, the optimal constrained feedback gain
was determined, which is also shown to constrain
optimally the expected values of state variable
of the corresponding stochastic system. It is
also confirmed that the constrained optimal cost
function is increased, due to the constraint. The
procedures used for discrete-time systems here can
be similarly extended to the continuous-time case,
which can be found in Ko (2005).
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