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Abstract:  Unmanned air vehicles (UAVs) can be used for surveillance and searching, 
usually with a specified goal i.e. a given area to search or, person or object to find.  In 
these cases, multiple UAVs can be more effective for searching than a single vehicle due 
to the greater area of coverage that they offer.  This paper outlines a search methodology, 
based on evolutionary algorithms (EAs), which guides a swarm of UAVs throughout a 
search mission.  The autonomously navigating vehicles also avoid unforeseen obstacles 
via reactive obstacle sensing.  Copyright © 2005 IFAC 

 
Keywords:  Autonomous vehicles, obstacle avoidance, search methods. 

 
 
 
 

 
1. INTRODUCTION

 
Unmanned air vehicles (UAVs) are robotic aircraft 
that can fly with either a remote input from a ground-
based operator, or can fly autonomously without 
human intervention.  UAVs and their potential 
applications have become increasingly prominent in 
recent years.  In a military application, multiple 
specialized vehicles may be more effective, and 
cheaper, than a single UAV which must undertake all 
search and attack tasks by itself, see (Jin, et al., 
2003).  In civilian terms, UAVs can be used for 
emergency tasks such as searching for survivors in 
dangerous environments or locating spills or leaks of 
dangerous chemicals etc., see (Flint, et al., 2002; 
Bruemmer, et al., 2002).   
 
Controlling multiple vehicles has also become a 
growing area of research.  Due to obvious limitations 
when working with multiple aircraft, i.e. cost of 
equipment and experimentation, previous research 
has used virtual simulation, see (Fierro and Das, 
2003; Reynolds, 1987; Koo and Shahruz, 2001), 
land-based vehicles, see (Fredslund and Matarić, 
2002) and virtual missiles (Hughes, 2002).  Some 
work in this field has used the “solution searching” 

principle of Genetic Algorithms (GAs), see (Srinivas 
and Patnaik, 1994), as the basis for searching of 
physical areas.  As the algorithms imitate the natural 
Darwinian selection process, it is conceptually 
simple to see how such algorithms can be applied to 
searching physical space within which there are high 
interest or high “fitness” areas.  This has prompted 
research using genetic and evolutionary algorithms 
for search, see (Goldberg, 1989; Raphael and Smith, 
2003), as well as vehicle route planning, see 
(Hughes, 2002; Kim, et al., 1997; Creaser and 
Stacey, 1999).  Particularly relevant to this paper and 
future progress, is work that uses GAs to search 
multidimensional space, see (Grevera and Meystel, 
1990), UAV guidance by GA rules, see (Marin, et 
al., 1999), and the use of GAs for guidance and 
control of multiple searching UAVs, see (Enns, et 
al., 2002). 
 

2. THE MISSION SYSTEM 
 

This paper focuses on the problem of performing a 
blind search i.e. with no a-priori information about 
the search area.  The paper presents a system to 
control a swarm of UAVs to perform the search task.  



As the swarm has no knowledge of targets or 
obstacles, the system must guide the UAVs 
throughout the search area, whilst individuals must 
also be able to react to obstacles that they may 
encounter during their search.   
 
The overall system can be described by a block 
diagram of the form shown in Fig. 1. 
   
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  The overall system architecture. 
 
The control hierarchy is divided into high-level 
central control and low-level individual control.  The 
high-level central control assumes ideal and full 
communication with each member of the swarm, 
which includes information gathered from each 
aircraft’s relevant sensors.  Proximity sensors 
indicate the possibility of a collision with an obstacle 
or another aircraft while a primary sensor (camera, 
IR sensor, etc.) indicates whether or not a target has 
been found.  This allows central control to make 
intelligent decisions regarding the collective motion 
of the swarm and the searching process.   
 
The low-level control block comprises a line-of-sight 
autopilot, flight control system and obstacle 
avoidance procedure.  Low-level control is 
constructed as shown in Fig. 2.  The flight control 
system and line-of-sight autopilot work together to 
allow each vehicle to navigate autonomously 
between waypoint x-y coordinates.  However, during 
the aircraft’s flight between waypoints, unexpected 
obstacles may be encountered e.g. trees, power lines, 
flocks of birds, etc. which must be avoided.  
Obstacle avoidance is employed to use information 
from the aircraft’s proximity sensors and 
subsequently generate an appropriate change in 
heading. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Low-level control architecture. 

2.1    The UAV Mathematical Model 
 
This research uses a small perturbation, linear 
representation of a single main-rotor and tail rotor 
helicopter.  For convenience, the model used is that 
of a Westland Puma helicopter but, although this is 
not typical of a vehicle that might be used for a 
swarm of UAVs, it is believed that principles of this 
control task can be investigated in a valid fashion 
using such a model. The model is given in standard 
state-space form as shown in Eqn. (1), 
 

                          uBxAx +=&                        (1) 
 

where x  represents the state variables (u, v, w, p, q, 
r, φ, θ, ψ), u  represents the helicopter control inputs 
(θ0(1), θ1S(1), θ1C(1), θ0(2) ), A  is the system matrix and 
B  is the input distribution matrix.  The system and 
input distribution matrices correspond to a steady-
level flight trim-state.  At this trim-state, the 
aircraft’s speed, UE , is 81.8 knots (42.08 ms-1) and 
the altitude, ZE , is 4031 ft (1228.65 m).  In 
conjunction with the Euler transformation matrix, 
these values allow analysis of the aircraft’s motion 
relative to the Earth-fixed axes (XE, YE, ZE). 
 
   
2.2   The Flight Control System 
 
The flight control system design is based on a simple 
PID control method, see (Dorf and Bishop, 2001).  
The control system for each vehicle consists of four 
independent PID controllers that control small 
perturbations in surge velocity u, altitude z, yaw 
angle ψ and lateral (sway) velocity v.  Each 
controller has the structure shown in Fig. 3. 
 
 
 
 
 
 
 
Fig. 3.  The general structure for each PID controller. 
 
 
2.3   Line-Of-Sight Autopilot 
 
The four PID controllers provide sufficient overall 
flight control of the linearised Puma model such that 
the aircraft can autonomously navigate a course of 
pre-defined waypoints.  The UAV navigates to each 
waypoint using simple trigonometry between current 
and desired coordinates, as shown in Fig. 4 and Eqn. 
(2). 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Line-Of-Sight heading calculation. 
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2.4   Obstacle Avoidance 
 
The final element of the lower-level individual 
vehicle control is provided by reactive obstacle 
avoidance.  In this study, the mission assumes no a-
priori information about the search area and this 
includes no knowledge of obstacles that a vehicle 
may encounter.  Therefore each vehicle cannot plot a 
course around known obstacles but instead must 
react to proximity sensor readings supplied by 
sensors onboard each aircraft.   
 
In this paper, each vehicle is assumed to have two 
forward-looking proximity sensors that indicate the 
presence of an object within a certain range and 
heading angle.  The configuration of these sensors, 
shown in Fig. 5, is such that the aircraft knows 
whether the obstacle is starboard or port of its current 
heading.  This simple configuration is employed with 
practical implementation considered.  Assuming the 
size and shape of obstacles are unknown, an evasion 
manoeuvre cannot be planned.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig. 5.  Proximity sensor configuration. 
 
If an obstacle is detected by either sensor i.e. an 
obstacle enters either of the sensor-sensitive regions, 
then an alert flag is raised.  When one of the flags 
signals an obstacle, the aircraft control system adds 
or subtracts 90˚ to the previously desired heading 
angle.  As the heading command is passed through a 
smoothing filter before becoming the desired 
heading command in the heading controller, this 
change is not seen as a step input.  Instead, it is 
added as a first-order increase or decrease in heading 
command that results in a gradual change in heading, 
thus avoiding the obstacle.  As the obstacle moves 
out of the sensitive region, the aircraft returns to an 
appropriate heading which will allow it to 
successfully intercept the next desired waypoint.  
The sensors do not distinguish between moving and 
static obstacles.  This means that the obstacle 

avoidance will also attempt to avoid moving objects 
such as a flock of birds.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  The successful operation of the complete 

low-level control system. 
 
With every aspect of the low-level control section 
working in tandem, each aircraft can autonomously 
navigate a course of waypoints whilst also avoiding 
any obstacles that they encounter.  This is illustrated 
in Fig. 6.   
 
This x-y plot shows the flight path of the UAV as it 
navigates a course of waypoints.  There is also an 
obstacle (shown as a black dot) placed directly 
between two waypoints (shown as circles).  The 
ellipse around the obstacle indicates the point at 
which the UAV first detects the obstacle.  This is 
actually a circle with a radius of 300 metres.  The 
dashed flight path shows the flight path of the UAV 
without the aid of obstacle avoidance.  The solid line 
shows how the addition of the obstacle avoidance 
system successfully directs the UAV around the 
obstacle as well as successfully intercepting the next 
waypoint.  Note that a vehicle must only pass within 
an “acceptance radius” of each waypoint.  This is 
effectively a sphere around each waypoint with a 
radius of 200 metres. 
 
 
2.5. Central Swarm/ Mission Control 
 
High-level control is provided by a central control 
system which is concerned primarily with the 
mission-specific task elements.  This includes using 
any information given by the user in order to define 
mission objectives as indicated in Fig. 1.  Although 
the simulations presented here feature UAVs flying 
in trim-state, this central block would ideally control 
each vehicle from take-off to mission completion and 
landing.   
 
The central control system implements a two-stage 
strategy in order to carry out the blind search.  As the 
UAV model is not suitable for modes of operation 
such as take-off and landing, simulations at this stage 
are concerned with the collective movement of the 
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UAV swarm to a search area, and the subsequent 
search of that area.  For these two tasks, central 
control implements a Migration Mode and a Search 
Mode, respectively.  The task of collective migration 
between search areas is presented in previous work 
by Carruthers and McGookin (2004).  Therefore this 
paper focuses on the search technique incorporating 
a “taboo” element, see (Glover, 1989), as well as 
obstacle avoidance.  
  
The Search Mode is responsible for guiding each 
UAV as the swarm enters the designated search area.  
The searching process is dictated by the creation of 
x-y coordinates by Search Mode algorithms.  The 
Search Mode comprises two algorithms for two 
different search conditions.  The first is active when 
no target has been found, even partially, and 
therefore the search mode relies on an evolutionary-
based algorithm to generate random x-y coordinates 
within the search area.  The second condition is that 
a target has been identified, although perhaps not 
pin-pointed.  At this stage, the search process relies 
on an adaptive-evolutionary algorithm to generate 
subsequent x-y coordinates.  The definition of these 
conditions, and thus the selection of an appropriate 
algorithm, relies on target identification. 
 
In order to identify targets, each UAV is equipped 
with a primary sensor (e.g. camera, IR detector, etc.) 
that continually scans the ground below, see Fig. 7.  
This sensor scans a circle directly below with a 
radius of 250 metres.  For ease, the swarm is looking 
for a target circle of the same radius. 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Each UAV uses a downward-facing primary 

sensor to search for a target directly below. 
 
As each UAV travels to a desired x-y coordinate, it 
continually evaluates the ground below, thus 
recording x-y coordinates with associated interest or 
“fitness” values.  It is this fitness value that dictates 
the particular algorithm to be used throughout the 
remainder of the search.  The fitness value can be 
any value between 0 and 1.  A fitness value of ‘0’ 
indicates that no target is detected at that coordinate.  
However, if fitness is greater than 0, then a target has 
been identified to some extent (fitness equal to 1 
would indicate that the target is completely covered 
by the scan circle).  Eqn. (3) and Fig. 8 show how the 
overlapping of the scan circle and target circle is 
used to generate a fitness value.  
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 8.  Fitness evaluation via percentage overlap. 
 
With each x-y coordinate having an associated fitness 
value, the appropriate search algorithm can be 
selected.  Both the evolutionary and adaptive-
evolutionary algorithms use binary chromosomes as 
a basis.  An initial chromosome comprising 8 binary 
bits is generated – 4 bits for the x component and 4 
bits for the y component.  These 8-bit chromosomes 
are decoded into the 2D coordinates which each 
UAV must intercept.   
 
While a target has not been found (Fitness=0), the 
evolutionary algorithm is chosen to generate the 
search coordinates as shown in Fig. 9.  As a target 
has not been found, the mutation rate between 
successive chromosomes is set at maximum i.e. it is 
possible that all 8-bits may change.  This is to ensure 
that no region of the search area is unduly focused 
upon.  In order to ensure that the swarm search as 
much of the area as quickly as possible, a ‘taboo’ 
element is introduced.  This means that as a new 
coordinate is generated by the evolutionary 
algorithm, it is checked against a list of locations that 
have already been generated and searched.  If the 
new point is within a 200m radius of a previously 
searched location, a new chromosome is created and 
subsequently checked.  This continues until a target 
is found, the search area has been fully searched, or 
the search is terminated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  The mechanics of the evolutionary algorithm. 
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However, if a target has been found (Fitness > 0), the 
mechanics of the search algorithm are changed.  The 
search coordinates are now generated by an adaptive 
search algorithm, as illustrated in Fig. 10.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.  The mechanics of the adaptive-evolutionary 

algorithm featuring variable mutation rate. 
 
This algorithm is based on a “best guess so far” 
principle where the instant that a UAV first registers 
a fitness value greater than 0, the x-y coordinate of 
the UAV is recorded with its associated fitness.  The 
x-y coordinate is coded into the closest possible 8-bit 
binary representation and this chromosome becomes 
the basis for the next batch of search coordinates.  
The associated fitness value is used to define the 
mutation rate used during the subsequent mutation 
process.  As fitness increases, mutation rate 
decreases, therefore less of the “best guess” 
chromosome is altered.  This has the effect of 
making successive search coordinates converge 
towards the target centre, thus allowing the swarm to 
pin-point and record the exact location of the target. 
 
 

3. MISSION STRATEGY & RESULTS 
 

To illustrate the unification of the low-level and 
high-level control hierarchies, a swarm comprising 
four UAVs has been used.  The simulated mission is 
not concerned with group migration between search 
areas and instead focuses on the Search Mode.  The 
searching process within the search area must also be 
conducted with the presence of obstacles.   
 
Within the search area, the four UAVs search 
independently and follow x-y coordinates initially 
generated by the evolutionary algorithm.  Once a 
target has been identified however, three UAVs 
follow the x-y coordinates generated by the adaptive-
evolutionary algorithm in order to pin-point the 
centre of the target.  The fourth UAV continues to 
search via the evolutionary algorithm.  This means 

that whilst 3 UAVs pin-point an identified target, at 
least 1 UAV continues to search the area to find 
additional targets.  These are recorded in a “to do” 
list which the other 3 UAVs will subsequently pin-
point. 
 
The implementation of the described mission 
strategy is illustrated in Fig. 11a - 11d.  
  

 
 

Fig. 11a.  The flight path of UAV 1 during the search 
mission. 
 
 

 
 

Fig. 11b.  The flight path of UAV 2.  
 

 
 
Fig. 11c.  The flight path of UAV 3. 
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Fig. 11d.  The flight path of UAV 4.   
 
The flight path of each vehicle is plotted individually 
for clarity.  The search area contains one target and 
one obstacle as labelled in Fig. 11a.  Each UAV 
enters from the bottom left-hand corner of the x-y 
plot. The flight paths of UAV1 and UAV3 
demonstrate the operation of the reactive obstacle 
avoidance system.  Each aircraft successfully avoids 
the obstacle whilst also intercepting the next 
waypoint.  Fig. 11b is a particularly good example of 
successive search coordinates converging towards 
the target. 
 

4.   CONCLUSIONS 
 

This paper presents a system to control multiple 
UAVs as they perform a blind search of an area.  
Simulation results show the successful 
implementation of evolutionary-based algorithms as 
the basis of the search method.  This search method 
uses an evolutionary-based algorithm as well as an 
adaptive version of an evolutionary algorithm in 
order to guide the swarm of vehicles throughout the 
search.  Through a low-level individual control 
system, each vehicle is also able to avoid unexpected 
obstacles.  The most important aspect is the 
continued development of a mission framework that 
will allow further research into areas such as swarm 
control methods and collision avoidance.   
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