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Abstract: Min-Max MPC (MMMPC) controllers (Campo and Morari, 1987) suffer from a
great computational burden that is often circumvented by using upper bounds of the worst
possible case of a performance index. These upper bounds are usually computed by means
of LMI techniques. In this paper a more efficient approach is shown. This paper proposes
a computationally efficient MMMPC control strategy in which the worst case cost is
approximated by an upper bound which can be easily computed using simple matrix
operations. This implies that the algorithm can be coded easily even in non mathematical
oriented programming languages such as those found in industrial embedded control
hardware. Simulation examples are given in the paper. Copyright © 2005 IFAC.
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1. INTRODUCTION

In Min-Max MPC controllers, the value of the con-
trol signal to be applied is found by minimizing the
worst case of a performance index (usually quadratic)
which is in turn computed by maximizing over the
possible expected values of disturbances and uncer-
tainty. Solving these problems can be very time con-
suming as they are of the NP-hard kind. Thus, the
implementation of this type of control is severely
compromised leading to a lack of experimental re-
sults. Often this issue is solved by using a bound of
the worst case cost instead of computing it explicitly
(Alamo et al., 2003). The upper bound can be effi-
ciently computed by using LMI techniques such as
in (Kothare et al., 1996; Casavola et al., 2000; Lu
and Arkun, 2000; Wan and Kothare, 2003). The LMI
problems have a computational burden that cannot be
neglected in certain applications, like those in which
the sampling rates are measured in seconds. More-
over, the interior point methods used to solve the LMI

depend on the initial solution and the time needed to
converge is not always the same.

Here an efficient upper bound of a quadratic maxi-
mization problem over a hypercube is presented. It is
based on simple matrix operations that can be per-
formed very efficiently by both personal computers
and dedicated embedded control hardware. Within the
MMMPC context it can be used as a substitute of
the worst case cost for systems in which there is no
computational power available to solve on line the
LMI problems.

The paper is organized as follows: section 2 presents
the MMMPC controller. Section 3 presents the ef-
ficient upper bound on the quadratic maximization
problem and section 4 presents a performance analysis
of the proposed bound compared to the LMI bound.
On the other hand, a simulation example is given in
section 5. Finally, section 6 presents the conclusions.



2. MIN-MAX MPC WITH BOUNDED ADDITIVE
UNCERTAINTIES

Consider the following state space model with bounded
additive uncertainties (Camacho and Bordóns, 1999):

x(t +1) = Ax(t)+Bu(t)+Dθ(t) (1)

y(t) = Cx(t)

with x(t) ∈ ℜdimx,u(t) ∈ ℜdimu, θ(t) ∈ Θ = {θ ∈
ℜdimθ : ‖θ‖∞ ≤ θm}, y(t) ∈ ℜdimy. Consider a se-
quence u = [u(t) · · ·u(t +Nu −1)]T of values of the
control signal over a control horizon Nu and θθθ =
[θ(t +1) · · ·θ(t +N)]T a sequence of future values of
θ(t) over a prediction horizon N. Furthermore, let
J(θθθ ,u,x) be a quadratic performance index of the
form:

J(θθθ ,u,x) =
N

∑
j=1

x(t + j|t)T Q jx(t + j|t)

+
Nu−1

∑
j=0

u(t + j)T L ju(t + j) (2)

where x(t + j|t) is the prediction of the state for t + j
made at t when the future values of the uncertainty are
supposed to be given by the sequence θθθ . On the other
hand Q j ∈ ℜdimx×dimx, L j ∈ ℜdimu×dimu are symmetric
positive definite matrices used as weighting parame-
ters.

Min-Max MPC (Campo and Morari, 1987) is based
on finding the control sequence u that minimizes
J(θθθ ,u,x) for the worst possible case of the predicted
future evolution of the process state or output signal.
This is accomplished through the solution of a min-
max problem like:

u∗(x) = arg min
u∈U

max
θθθ∈Θ

J(θθθ ,u,x)

s.t. Ru ≤ cθ +Fx
(3)

where ΘΘΘ = {θθθ ∈ ℜN·dimθ : ‖θθθ‖∞ ≤ θθθ m}, and U ⊆
ℜNu·dimu is compact. Linear time invariant constraints
can be taken into account and defined through the ma-
trices R ∈ ℜnc×(Nu·dimu), F ∈ ℜnc×dimx and the vector
cθ ∈ ℜnc where nc is the number of constraints. As
usual in all predictive control schemes, the solution
of problem (3) is applied in a feedback manner us-
ing a receding horizon strategy. The properties of the
min-max problem depend on the structure and prop-
erties of the cost function J(θθθ ,u,x) and the prediction
model. A common choice for J(θθθ ,u,x) is a quadratic
function of θθθ , u and the predictions. The results pre-
sented in this paper can be applied to LTI SISO or
MIMO input-output models, convolution models or
state-space models with such a quadratic cost func-
tion. All these descriptions lead to a prediction equa-
tion which is an affine function of process uncertain-
ties, inputs and state, i.e.:

ξξξ = Guu+Gθ θθθ +Fxx(t) (4)

where ξξξ ∈ ℜN·dimx can be either the predictions of
process state or output over the prediction horizon,
Gu ∈ ℜ(N·dimx)×(Nu·dimu), Gθ ∈ ℜ(N·dimθ)×(N·dimθ) are
lower triangular matrices and Fx ∈ ℜ(N·dimx)×dimx is
the free response matrix.

Although the results presented in this paper are not
valid in general for closed-loop MMMPC with a
quadratic cost (see (Mayne et al., 2000) and references
therein), they are valid when using a semi-feedback
approach in which the control input is given by u(t) =
−Kx(t) + v(t) where the feedback matrix K is cho-
sen to achieve some desired property such as nom-
inal stability or LQR optimality without constraints.
The MMMPC controller will compute the optimal
sequence of correction control inputs v(t). Rewritting
the state equation of system (1) as

x(t +1) = ACLx(t)+Bv(t)+Dθ(t +1) (5)

it is clear that such semi-feedback MMMPC can be
casted into problem (3) with ACL = (A−BK). More-
over, in (Kerrigan and Alamo, 2004), an affine pa-
rameterization of the input signal that shorten even
more the gap between open and closed-loop min-max
controllers is presented. The idea is to parameterize
the input signal as

u(t) = v(t)+
t−1

∑
j=0

Mt, jθ( j) (6)

This parameterization can also be embedded in (3).

It can be seen that the cost function can be rewritten
as:

J(θθθ ,u,x) = uT Muuu+θθθ T Mθθ θθθ +2θθθ T Mθuu
+2xT MT

u f u+2xT MT
θ f θθθ + xT M f f x (7)

where: Muu = GT
u QGu + L, Mθθ = GT

θ QGθ , M f f =
FT

x QFx,Mθu = GT
θ QGu, Mu f = GT

u QFx, Mθ f = GT
θ QFx

and Q and L are symetric positive definite block diag-
onal matrices composed of the Q j and L j respectively.
It can easily be seen that Mθθ is a Gram matrix and
therefore at least positive semidefinite . On the other
hand, Muu is positive definite as L > 0. Note that as
Mθθ ≥ 0 then J(θθθ ,u,x) is convex on θθθ , and because
Muu > 0 strictly convex on u. Therefore the solution
of (3) will be unique (Camacho and Bordóns, 1999).

Finally, note that the stability properties of MMMPC
controllers are not lost by the use of upper bounds
based on the addition of a quadratic term on θ to the
original functional (Alamo et al., 2003).

3. UPPER BOUND FOR THE QUADRATIC
MAXIMIZATION PROBLEM

In this section a procedure to compute efficiently an
upper bound of the worst case cost is given. Consider
the following maximization problem:



γ∗ = max
‖θ‖∞≤1

θ T Qθ +2θ T p

where Q ≥ 0. Note that being the maximization of
a convex function on a convex set the maximum is
attained at least at one of the vertices of the hypercube
described by Θ , {θ : ‖θ‖∞ ≤ 1} (Bazaraa and Shetty,
1979). Thus, the problem can be rewritten as:

γ∗ = max
θ∈vert{Θ}

θ T Qθ +2θ T p (8)

To find the value of γ∗ it is necessary to evaluate the
function for all the vertices of Θ. Taking into account
that the number of vertices is 2dim{θ} it is clear that
the problem cannot be solved in real time for a certain
dimension of θ (because this is a well known NP-hard
problem).

Problem (8) is equivalent to the following augmented
problem:

max
[

θe
θ

]

∈vert{ΘA}

[

θe
θ

]T [

0 pT

p Q

][

θe
θ

]

(9)

where ΘA is the augmented unitary hypercube. In
effect, suppose that the maximum of the augmented
problem (9) is attained at θe = 1 and θ = θ ∗. Then the
same maximum is attained also for θe = −1 and θ =
−θ ∗, thus the maximum of the augmented problem
is the same as that of (8) because we can assume
that θe = 1 maximizing then θ T Qθ + 2pT θ which
is the original maximization problem. The augmented
problem can be rewritten as:

γ∗ = max
z∈vert{ΘA}

zT Hz (10)

where H ∈ R
n×n. Now suppose T a diagonal matrix

such that T ≥ H, then:

zT Hz ≤ zT T z = ∑Tiiz2
i ≤ trace(T )‖z‖2

∞ ≤ trace(T )

thus:

γ∗ ≤ trace(T )

Therefore a conservative upper bound of γ∗ can be
found solving the following LMI problem:

σ∗ = min trace(T ) (11)

s.t.

T ≥ H

T diagonal

If H ≥ 0 this upper bound of γ∗ satisfies (Nesterov et
al., 2000):

γ∗ ≤ σ∗ ≤
π
2

γ∗

2σ∗

π
≤ γ∗ ≤ σ∗

This means that σ ∗ provides both an upper and lower
bound. Moreover, the conservativeness of the bound
does not depend on the dimension of H. Thus, σ ∗ is an
appropiate bound to be used within a worst case MPC
strategy. However, solving the LMI problem (11) is
computationally demanding enough to pose a problem
when the sampling time is small and the dimension of
H is moderately high. We propose another method to
find a conservative upper bound of γ∗.

The goal here is to find the smallest (i.e. minimum
trace) diagonal matrix T such that T > H. The strategy
is to obtain a diagonal matrix adding to H n − 1
positive definite matrices of the form vivT

i :

H + v1vT
1 + v2vT

2 + v3vT
3 + · · ·+ vn−1vT

n−1 = H f

where H f is a diagonal matrix. Thus the problem is to
find vi, i = 1, · · · ,n− 1 such that H f is diagonal and
the conservativeness of the bound is kept as low as

possible. Suppose that H =

[

a bT

b Hr

]

,a ∈ ℜ and that

we want to add v1vT
1 in such a way that:

[

a bT

b Hr

]

+ v1vT
1 =

[

d 0
0 Ĥr

]

, d ∈ ℜ (12)

Once v1 is found, the process continues by choosing
v2 such that Ĥr is also diagonalized and so on. If v1 is
chosen to be

[

α eT ]T then v1vT
1 becomes:

[

α
e

]

[

α eT ]

=

[

α2 αeT

αe eeT

]

with α > 0. This implies that αe = −b thus e = −b
α ,

d = a+α2 and Ĥr = Hr + bbT

α2 .

The parameter α should be chosen to minimize the
error introduced by the diagonalization in the original
augmented maximization problem. This error is:

zT v1vT
1 z = zT

[

α

−
b
α

]

[

α −
bT

α

]

z

The error is maximum when z turns out to be:

z∗ = sign

[

α

−
b
α

]

(and also when it is of opposite sign). Taking into
account that

[

α −
bT

α

]

z∗ =

∥

∥

∥

∥

∥

α

−
b
α

∥

∥

∥

∥

∥

1

(where ‖x‖1 is the 1-norm equal to the sum of the
absolute values of the components of x), the maximum
error is

∥

∥

∥

∥

∥

α

−
b
α

∥

∥

∥

∥

∥

2

1



The value of α that minimizes the maximum error can
easily be computed by finding the value that makes the
derivative of

∥

∥

∥

∥

∥

α

−
b
α

∥

∥

∥

∥

∥

1

= α +
1
α
‖b‖1

equal to zero. Such value is:

α =
√

‖b‖1 (13)

The procedure to compute the upper bound σu is
summarized in the following steps:

(1) Let T = H ∈ R
n×n.

(2) for k = 1 to n−1
(3) Let Hsub = [Ti j] for i, j = k · · ·n.

(4) Compute α for Hsub =

[

a b
bT Hr

]

from (13).

(5) Make vT
k =

[

α
−bT

α

]

.

(6) Make vT
e =

[

0 · · · 0 vT
k

]

∈ R
n

(7) Update T by making T = T + vev′e.
(8) endfor

(9) Compute the upper bound from σu =
n
∑

i=1
Tii.

Remark 1. Note that if Hsub of step 2 has all its ele-
ments nonnegative at a certain iteration, then a least
conservative bound is computed by adding all the ele-
ments of the partly diagonalized T matrix.

4. PERFORMANCE ANALYSIS OF THE
PROPOSED BOUND

Here the accuracy of the proposed upper bound is
discussed . The upper bound will be tested against the
LMI bound 1 and the 1-norm of the matrix H, which
is itself a very rough upper bound:

σn = ‖H‖1 =
N

∑
i

N

∑
j
|Hi j|

The 1-norm bound will be equal to the maximum
when all the elements of z∗ are nonnegative. In the
following it will be shown that σu ≤ σn.

Taking into account the block structure of H given in
(12) the 1-norm of H can be computed as

σn = ‖Hr‖1 +2‖b‖1 + |a|

On the other hand, the 1-norm after a diagonalization
step can be computed as

1 Additionally the proposed bound has been tested against the
eigenvalue bound n ·max{eig(H)}. The proposed bound has better
accuracy for practical values of the prediction horizon (up to 30)
and lower computational burden.
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Fig. 1. Mean deviation from the LMI bound plotted as
a function of matrix dimension for a group of ran-
domly generated matrices (see text for details).
1-norm bound dotted, proposed bound solid.

σn−1 =

∥

∥

∥

∥

∥

∥

a+‖b‖1 0

0 Hr +
bbT

‖b‖1

∥

∥

∥

∥

∥

∥

1

≤ |a|+‖b‖1

+‖Hr‖1 +

∥

∥

∥

∥

bbT

‖b‖1

∥

∥

∥

∥

1

Taking into account that
∥

∥

∥

bbT

‖b‖1

∥

∥

∥

1
= ‖b‖1 it follows

that

σn−1 ≤ σn

Thus, the diagonalization scheme proposed in section
3 provides a succession of improved upper bounds.

Now both the proposed bound and the 1-norm will
be compared to the LMI bound. Consider figure 1 in
which it is plotted the mean deviation of the proposed
bound (solid plot) from the LMI bound as a function
of the dimension of Q. For this comparison, a group of
randomly positive definite matrices where the mean
value of its elements is zero have been generated 2

(200 matrices for each dimension). It can be seen
that the deviation from the LMI bound grows with
matrix dimension, as it can be expected from the
error introduced at each diagonalization step. Even
though, it is noteworthy that for much of the range
needed in control applications (up to dim{Q} = 30,
which accounts for 1,073,741,824 vertices in Θ) the
deviation from the LMI bound remains under 20%.
Moreover, it can be seen that the 1-norm bound is
always worse (more conservative) than the proposed
bound when the mean of the elements of Q are around
zero.

Another interesting property is that, taking into ac-
count remark 1, the deviation of the proposed upper
bound from the LMI bound depends on the mean value

2 These matrices are generated subtracting two uniformly dis-
tributed random matrices created using the Matlab rand function.
Then, every matrix is multiplied by itself transposed to make it
positive semidefinite.
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Fig. 2. Mean deviation from the LMI bound plotted as
a function of the mean of the elements of H0 for
a group of randomly generated matrices.

of the elements of H0, with Q = H ′
0H0. As illustrated

by figure 2, the biggest error is when the mean is
around zero, quickly dropping to very small values
when the mean goes to positive or negative values.
The reason for that behavior is that, for a positive or
negative biased matrix, the maximum is attained at
vertices with progressively more elements of the same
sign. Thus, the maximum tend to be at the sum of
the elements of the partly diagonalizated T matrix. In
MMMPC control problems, as found by the authors
through many simulations, the mean of the sum of
the elements of matrix H, which ultimately depends
on that of H0, is generally neatly different from zero,
although not all its entries share the same sign. This
means that the bound accuracy will be close to that of
the LMI bound.

4.1 Computational burden of the upper bound

The proposed bound has lower computational burden
than the LMI bound. Figure 3 shows the speed-up
factor for group of random matrices with different
mean and dimensions. To make this comparison as fair
as possible, the LMI bound has been obtained using
the solver by F. Rendl that can be downloaded from
http://www.math.uni-klu.ac.at/or/Software. This
solver, specific for problem (11), proved to be very
much efficient than the standard solver provided with
the LMI Toolbox of Matlab. Remark 1 has been taking
into account when computing the proposed bound. It
can be seen that the proposed bound can be computed
using many times less floating point operations 3 than
the LMI bound. This can be exploited to apply worst
case control for systems with fast dynamics or use
hardware with low computational power. Moreover,
the proposed bound can be computed using simple
matrix operations, whereas in the case of LMI solvers
more complex operations such as the Cholesky de-
composition are needed. This means that the algorithm

3 The number of operations needed for computing each bound have
been obtained using the Matlab flops function. The precision of the
LMI solver was left to default.
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per bound and the LMI bound (computed as

flopsLMI
flopsproposed

) for a group of randomly generated
matrices with different mean and dimension.

can be coded easily even in non mathematical oriented
programming languages such as those found in indus-
trial embedded control hardware.

It is noteworthy that as matrix dimension grows no
clear trend is seen when the mean of H0 is around zero.
The computational burden for the proposed bound
grows as O(n3) where n is the matrix dimension. On
the other hand, the interior point methods used for
this class of LMI problems are also O(n3) algorithms,
hence the relatively constant speed-up factor seen in
figure 3 for zero mean matrices. Note however that
the underlying constant in the number of operations
needed by the LMI solver is bigger, leading to the
speed-up factor shown. On the other hand, as illus-
trated in figure 3, the mean of the entries and the
dimension of H0, where Q = H ′

oHo, affects the speed-
up factor severely when this mean is different from
zero. In this case, in the light of remark 1, the proposed
upper bound is computed much faster than the LMI
bound. In fact, when most of the entries of matrix
H0 (and therefore H) shares the same sign, the speed-
up factor between the proposed bound and the LMI
bound grows progressively showing a linear trend.
This can be interpreted as an evidence that for those
matrices, the proposed bound tends to be O(n2) in-
stead of the worst case (i.e., zero mean H0) in which
the algorithms behaves as O(n3). Table 1 shows how
in a real MMMPC, the proposed bound can be com-
puted with significantly less operations than the LMI
bound. Furthermore, the speed-up factor grows with
the prediction horizon, meaning that longer prediction
horizons can be used with a given hardware. These
figures are justified because, as pointed out before,
the mean of the sum of the elements of matrix H is
different from zero.

5. SIMULATION EXAMPLE

As pointed out in section 2, the results of the paper
can be applied to different model descriptions. As



Table 1. Mean speed-up factor for different
values of the prediction horizon (N) in the

simulation example of section 5.

N Speed-up factor
11 62.11
20 92.74
30 118.11
40 159.28
50 178.05
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Fig. 4. Simulation example. Output and control signal
shown for the proposed worst case controller
(solid) and the exact Min-Max MPC (dotted).

an example of simulated application of the MMMPC
controller proposed in section 2 consider the following
first order process described by a CARIMA model:

yk+1 = 1.9yk −0.9yk−1 +0.2∆uk +θk+1

with ∆ = (1−z−1). In figure 4 it is shown a simulation
of the MMMPC applied with parameters θm = 0.1,
Nu = N = 11 and L = 2 (solid plot). Note that the
horizon is set to a relatively low value so that the
exact Min-Max MPC controller can be simulated in an
average computer. Also in the same figure it is shown a
Min-Max MPC in which the cost is computed exactly
(dotted plot). For both controllers a small random
noise of 0.05 of amplitude has been added to the
output. Furthermore, at sampling time k = 55 a step
disturbance of amplitude 0.15 is added to the process
output. Computing the MMMPC simulation was 44.3
times faster than the Min-Max MPC (i.e., a speed-up
factor of 44.3). This speed up would be more dramatic
as the horizon grows, because the number of vertices
of Θ grows exponentially whereas the computational
burden of the proposed bound grows polynomially.
Also in the figure it is shown the value of the control
signal applied for both controllers. As it is shown in
figure 4 the performance achieved by both controllers
is very close. The proposed worst case controller
is slightly more aggressive than the exact Min-Max
MPC. The explanation for this is that the upper bound
based controller is more conservative than the exact
Min-Max MPC. Thus, expecting a worse situation, it
reacts to the disturbance in a more aggressive manner.
The behavior of both controllers, however, is pretty

much the same, a sign of the tightness of the upper
bound.

6. CONCLUSIONS

An MMMPC based on an efficient upper bound has
been presented in this paper. It has much lower com-
putational burden than other approaches based on LMI
techniques and can be implemented in dedicated in-
dustrial control hardware. The price to be paid is a
moderately increment in the conservativeness of the
bounds obtained. However, its little computational
burden opens new fields of applications of MMMPC
controllers.
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