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1. REMARKS ON CLOSED-LOOP
PREDICTION ERROR IDENTIFICATION

Let z := [u y]> be a wide sense stationary
zero mean process, which is second-order ergodic
and with a full-rank rational spectral density
matrix. There may be feedback from y to u, see
(Granger 1963, Caines and Chan 1976, Gevers and
Anderson 1981) for a definition of this concept.

We discuss the identification of the “determinis-
tic” transfer function F (z) of the linear stationary
(innovation) model of y given u, of the usual form

y(t) = F (z)u(t) +G(z)e(t) (1.1)

where F (z) and G(z) are rational transfer matri-
ces and e is the one step ahead prediction error
e(t) = y(t) − E

[

y(t) | Z−
t

]

, Z
−
t being the joint

infinite past of y and u up to time t. Without loss
of generality, we can assume that F (∞) = 0. It is
well-known that the input-output relation(1.1) is
the innovation representation of y given u, if and
only if G(z) is minimum phase (no zeros outside

1 Work supported by the Italian National Ministry of

Higher Education (MIUR) and by the European Commu-

nity project RECSYS.

of the unit circle) and such that G−1(z)F (z) has
no unstable poles (Ljung 1997).

Early results in the literature, (Caines and Chan
1976, Gevers and Anderson 1981, Ng et al. 1977),
which we shall here give for granted discuss iden-
tifiability of linear feedback models of this kind.

Two main difficulties in closed-loop identification
are the correlation of the white noise e with (past)
inputs u and the possible instability of the open-
loop plant F (z) to be identified. Both difficulties
are circumvented in PEM identification by iden-

tifying the predictor ŷθ(t|t − 1) := Eθ[y(t) | Z
−
t ],

which should be thought just as a deterministic
(parameterized) linear dynamical system process-
ing the past input data y and u. The correlation
problem has no impact in the parameter estima-
tion phase as it influences only the structure of
the predictor and can be dealt with theoretically
beforehand. The instability also has virtually no
influence since under mild assumptions on the
data generating system (the true F (z) may well
be unstable!), the predictor is an asymptotically

stable system (compare e.g. the asymptotic stabil-
ity of the Kalman Filter) and the usual statistical



asymptotics based on stationarity and ergodicity
naturally applies.

Since there is basically a one to one correspon-
dence between the predictor model and the pair
(F (z), G(z)) all the above applies directly also to
the identification of the model (1.1). It is in fact
well-known and it has been recently been restated
in (Forsell and Ljung 1999) that prediction er-
ror methods, provided the model class is (in a
very specific sense) “rich enough”, yield consistent
estimators of F (z) regardless of the presence of
feedback.

On the contrary, until very recently subspace
methods have not been able to cope successfully
with the presence of feedback. It is the purpose of
this paper to clarify this situation and to provide
a possible explanation of this fact. We shall argue
that subspace system identification can also natu-
rally be restated as predictor identification and in
this framework subspace methods could in princi-
ple yield the same kind of asymptotic behavior of
PEM methods also with closed-loop data. As we
shall see however, this is true only up to a point
since, unlike PEMmethods, subspace methods are
sensitive to initial conditions and the necessity of
working in practice with regressions on a finite
amount of data prevents subspace procedures to
yield consistent estimates.

1.1 Notations and background

The notations are fairly standard: boldface let-
ters will denote (in general vector-valued) random
quantities, which we invariably assume zero-mean
and with a finite covariance matrix. Calligraphic
capital symbols (possibly with time subscripts)
denote linear subspaces of random variables en-
dowed with the usual inner product 〈 ξ, η 〉 :=
E{ξη}, the operator E denoting mathematical
expectation. The symbol E [ζ | X] denotes the vec-
tor of orthogonal projections (conditional expec-
tations in the Gaussian case) of the components
of ζ ∈ Z onto the subspace X.

Let the subspaces A and B of Z be in direct sum,
i.e. A ∩ B = {0}, then the orthogonal projection
of any element ζ ∈ Z onto the direct sum A + B
can be written uniquely as a sum of elements of
A and B, namely

E {ζ | A+ B} = E||A {ζ | B}+ E||B {ζ | A}

where E||A {ζ | B} is called the oblique projection
of ζ onto B along A and E||B {ζ | A} is called
the oblique projection of ζ onto A along B. The
notation A ⊥ B | C means that the two subspaces
A and B are conditionally orthogonal given a third

subspace C, namely, for any α ∈ A and β ∈ B

〈α− E {α | C} , β − E {β | C}〉 = 0

If C = {0}, conditional orthogonality reduces to
the usual orthogonality A ⊥ B.

In this paper, rather than working with notation-
ally cumbersome finite arrays of observed sample
data (e.g. finite Hankel matrices) and then taking
limits as the sample length N tends to infinity,
as it is often done in the subspace identification
literature, we shall work entirely in a stochastic
setting. Under the assumed second order ergod-
icity of the observed processes, for N → ∞ the
the sample covariances can be substituted by the
true ones and we can essentially rephrase identi-
fication in terms of random variables rather than
numerical data. For a more precise description of
the equivalence of the two setups see (Lindquist
and Picci 1996).

Still, in order to deal with realistic subspace algo-
rithms which can only regress on a finite amount
of data, we shall keep finite past and future hori-

zons (the “i” parameter of (Van Overschee and
De Moor 1994) or the p and f parameters in most
subsequent subspace literature). This setting we
shall describe as using data from a finite obser-

vation interval later on. In this paper finite (and
generally fixed) past and future horizons will hold
even when the sample size N is let going to ∞
for the purpose of asymptotic analysis. Because of
this intrinsic limitation, the effect of initial condi-
tions has to be taken into account and will, as we
shall see later, lead to generally biased estimates.
This unpleasant effect of finite observation inter-
val on the estimates does not show when there is
no feedback.

Even if the effect of initial conditions (and hence
the bias) could theoretically be eliminated by let-
ting the past horizon p := t − t0 tend to infinity
(perhaps at at a certain rate), we shall remind the
reader that in practice the regression estimates
in subspace identification involve sample covari-
ance matrices of past and future horizon data,
estimated with finite data length N . It is well-
known that the variance of these sample covari-
ances grows (for fixed N) rather sensibly when the
past and future horizons p and f are expanded and
it is a good general rule of thumb not to increase
p and f over a certain threshold, which depends
on N .

2. SUBSPACE IDENTIFICATION VIA
PREDICTOR MODELS

Naturally, subspace methods are designed for the
identification of state space models of the form

{

x(t+ 1) = Ax(t) +Bu(t) +Ke(t)
y(t) = Cx(t) + e(t)

(2.1)

which we assume is a minimal state space realiza-
tion of the I/O model (1.1), so that F (z) = C(zI−



A)−1B, G(z) = C(zI −A)−1K + I. It is shown in
the stochastic realization literature, see (Chiuso
and Picci 2003), that the state space of (2.1) (the
subspace spanned by the scalar components of the
state vector x(t)), can abstractly be constructed
as the space spanned by the oblique projections
of the future outputs {y(t+k), k = 0, 1, . . . } onto
the “joint past inputs” (u(s) and e(s), s < t)
along the future “joint inputs” (u(s) and e(s), s ≥
t) of the model (2.1), namely

X
+/−
t = E‖U

+
t
∨E

+
t

[

Y
+
t | U

−
t ∨ E

−
t

]

. (2.2)

This object is called an oblique predictor space

(Picci 1997). As discussed in (Chiuso and Picci
2003, Chiuso and Picci 2005) this recipe for con-
structing the state space works in the presence of
feedback , provided the transfer function F (z) is
stable. There are troubles with this construction
when the “deterministic” transfer function F (z)
has unstable dynamics since in this case the joint
past and future input spaces intersect and the
oblique projection looses its meaning.

Now, it is apparent from the early literature, from
(Van Overschee and De Moor 1993) to (Chiuso
and Picci 2004a), that we can abstractly regard
most subspace identification methods as different
implementations of a basic two step procedure:

(1) Construct the state spaces X
+/−
t and X

+/−
t+1

and choose bases x(t) and x(t+ 1),
(2) Compute the system matrices A,B,C,K

from the chosen bases. In practice, given x(t)
and x(t+1), this amounts to solving a linear
regression for the unknown parameters in
(2.1) by least squares 2 .

Remark 2.1 The first step is essentially com-
mon to all subspace algorithms. In (Chiuso and
Picci 2004a) the estimation of the observability
matrix as done in the MOESP class of algorithms
(Verhaegen 1994) has been shown to be equivalent
to regressing on the state as in step (1) (the so-
called “state approach”). The second step can
sometimes be implemented differently but this
does not change the essence of our discussion.
Later we shall only refer to the “state approach”.
We just mention here that, under some specific
circumstances, a “state-approach” based predic-
tor identification algorithm can be shown to be
asymptotically efficient (Chiuso 2005). 3

It is really the specific procedure adopted to con-

struct X
+/−
t which makes for the merits and de-

merits of each method. It is a fact that all stan-
dard subspace procedures (see (Larimore 1990,
Van Overschee and De Moor 1994, Verhaegen
1994, Picci and Katayama 1996, Chiuso and

2 Actually to estimate the stochastic parameters of the

model it also takes solving a Riccati equation.

Picci 2004b)) fail when data are collected in closed
loop since the state construction step is based
on some sort of manipulation of the model (2.1).
In other words, these procedures attempt to con-
struct the state space from the equations (2.1).
This invariably requires that e(t) should be or-
thogonal to the whole input history U which is
equivalent to absence of feedback from y to u

(see (Granger 1963)). For more comments on these
procedures see also the discussion in (Ljung and
McKelvey 1996).

It should be said that (Chou and Verhaegen 1997,
Van Overschee and De Moor 1997) formally deal
with closed-loop systems. However the proposed
algorithms either need some extra data (say the
Markov parameters of the controller) or are ex-
tremely sensitive to noise. Other approaches, re-
quire some sort of preliminary ARX modeling,
either directly (Ljung and McKelvey 1996) or in
order to remove undesirable terms due to feedback
(Jansson 2003). Also the algorithm of (Qin and
Ljung 2003), which uses that fact that X+/− can
be obtained via the oblique projection (2.2), does
not require orthogonality of innovations and input
variables but turns out to be very sensitive to
instability of F (z).

What we would like to stress is that this state of
affairs should not be seen as an intrinsic limitation
of subspace methods in the presence of feedback,
but rather should be attributed to the way the
state space is constructed.

In our recent work (Chiuso and Picci 2005), in-
spired by an idea of (Jansson 2003), we have
suggested an alternative procedure to construct

the oblique predictor space X
+/−
t which does not

require extra data, and does not suffer from the
possible ill-conditioning mentioned above, occur-
ring when the open loop system is unstable. It
is based on the idea of looking at the inverse

system generating the innovations e(t) from the
joint process y and u, namely the “whitening filter
realization”
{

x(t+ 1) = Āx(t) +Bu(t) +Ky(t)
e(t) = −Cx(t) + y(t)

(2.3)

where Ā := A −KC. Here the state process x(t)
is the same as in (2.1) so that the two models

have the same state space X
+/−
t (a very well-

known fact!). This model is well-known to be
asymptotically stable under mild conditions on
the zeros of the system.

Remark 2.2 Since X
+/−
t is the state space of the

system producing the innovation e(t) from past
input and output measurements {y(s),u(s), s ≤
t}, it follows by the general recipe described

before, that X
+/−
t must be the oblique predictor

space of E
+
t given Z

+
t , i.e.



X
+/−
t = E‖Z

+
t

[

E
+
t | Z

−
t

]

. (2.4)

This oblique projection of course makes sense if
and only if Z

+
t ∩Z

−
t = {0}, which is guaranteed if

the spectrum of the joint process is bounded away
from zero (Hannan and Poskitt 1988). For finite
dimensional models this in particular requires that
Ā := A −KC be strictly stable, i.e. there should
be no zeros of the noise filter on the unit circle 3 .
3

An observation made in (Chiuso and Picci 2005)
is that one need not pre-compute the future in-

novation space E
+
t to obtain X

+/−
t . The following

result is quoted from (Chiuso and Picci 2005)

Theorem 2.1. Assume that the joint process sat-
isfies

Z
+
t ∩ Z

−
t = {0}

then the space X
+/−
t is generated by the oblique

projections E‖Z[t,t+k)

[

Yt+k | Z
−
t

]

, for k = 0, 1, . . . ,∞,
i.e.

X
+/−
t =

∞
∨

k=0

E‖Z[t,t+k)

[

Yt+k | Z
−
t

]

. (2.5)

The closed vector sum can be terminated at
any k ≥ n where n is the system order, i.e.

the dimension of X
+/−
t , in which case it is only

required that Z[t,t+k) ∩ Z
−
t = {0}.

We would like to stress that the recipe (2.5) just
requires computing oblique projections of future
outputs (y(t + k)) along the future input and
output space (Z[t,t+k)) onto the past data (Z−

t ).
This yields the following procedure (based on
infinite past data) to estimate the system matrices
(A,B,C):

(1) Compute the oblique projections

E‖Z[t,t+k)

[

Yt+k | Z
−
t

]

, k = 0, . . . ,K
(2.6)

and find a “best” n-dimensional 4 basis x(t)

for the subspace X
+/−
t generated by these

oblique predictors.
(2) Repeat the same procedure shifting time to

t+ 1, to get a (coherent) basis in X
+/−
t+1 .

(3) Solve by standard least squares the regression
(2.1) for the system matrices (A,B,C).

3 Recall that strict stability of the predictor is always
required for prediction error methods, and it is also postu-

lated in (Jansson 2003).
4 Here the system order n is also assumed to be known.

Of course any consistent order estimation procedure used

in subspace identification would do. Order estimation is

performed in most subspace identification algorithms by a

(weighted) SVD truncation step which shall not discuss in

this paper.

This algorithm will be further discussed in Section
3.

From the above it takes a very short step to realize

that X
+/−
t is also the state space of the output

predictor ŷ(t|t − 1) based on the joint past data.
Actually, since ŷ(t|t− 1) = y(t)− e(t), the latter
is described essentially by the same model as the
whitening filter (2.3), namely
{

x(t+ 1) = Āx(t) +Bu(t) +Ky(t)
ŷ(t|t− 1) = Cx(t)

(2.7)

where Ā := A − KC. Hence it follows that the
state space of this model, still equal to X

+/−
t , must

be the oblique predictor space of ŷ given z, namely

X
+/−
t := E‖Z

+
t

[

Ŷ
+
t | Z

−
t

]

. (2.8)

Therefore formulas (2.2), (2.4), (2.5) and (2.8)
turn out to define the same object. In conclusion,
exactly as prediction error methods are based
on the identification of the predictor ŷθ(t|t − 1),
subspace methods can be based on the identifi-

cation of the state space X
+/−
t of the predictor

realization (2.7).

Even though at a superficial look the algorithm of
(Chiuso and Picci 2005) described by the steps
(1), (2), (3) above might look different, it is
actually an implementation of formula (2.8) for
the construction of the state space. The sequential
steps required to implement (2.6) for k = 1, 2, . . .,
are in fact hidden in the computation of the
predictors ŷ(s|s − 1), s ∈ [t, T ). A formal proof
of this fact follows from the identities

E‖Z
+
t

[

ŷ(s|s− 1) | Z−
t

]

= E‖Z[t,s)

[

ŷ(s|s− 1) | Z−
t

]

= E‖Z[t,s)

[

y(s) | Z−
t

]

since ŷ(s|s− 1) ∈ Z−
s , s ∈ [t, T ).

It is remarkable that it has taken over a decade
to realize that the predictor model could lead to
a more general and robust method for subspace
identification which works equally well in the
presence of feedback.

3. SUBSPACE IDENTIFICATION WITH
FINITE DATA

In the previous discussion it has been established

that the predictor space X
+/−
t can be computed

without bias (and hence the system matrices can
be consistently estimated from (2.1)) in case in-

finite past data were available. However it has
recently been shown by (Chiuso and Picci 2005)
that using closed-loop data on a finite past horizon
t−t0, to compute the predictors (which is the only
realistic way to go in practice) may lead to biased
estimates. Closed-loop subspace procedures such
as (Qin and Ljung 2003, Jansson 2003, Chiuso and
Picci 2005) may fail to give consistent estimates
unless some particular condition on the zeros of



the joint spectrum are satisfied. The reason is
that the transient predictor (i.e. the transient
Kalman filter based on finite past data) requires
also modeling of u. In particular a minimal re-
alization of the transient predictor has in gen-
eral larger dimension than the innovations model
(2.1) 5 while, when feedback is absent, the input
process u can be considered exogenous and mod-
eling of u can be completely avoided. In this case
the finite history transient predictor defined as
ŷt0(t | t − 1) := E

[

y(t) | Z[t0,t) ∨ U[t,T ]

]

, admits
a state space realization of the same dimension of
(2.1), which, remarkably, involves just the station-
ary parameters 6 (A,B,C) (Van Overschee and
De Moor 1994, Chiuso and Picci 2004b). This is
essentially due to the fact that when data are
collected in open loop, the effect of future inputs
can always be encoded in the initial condition
x̂(t0) := E[x(t0) | U[t0,T ]] (see (Van Overschee
and De Moor 1994, Chiuso and Picci 2004b)) while
in closed loop this is no longer possible. This is
precisely the point where feedback plays a crucial
role. To put it another way:

(1) In open loop, the future input signal after t0
is independent of the initial condition x(t0)
and of the whole innovation process e.

(2) In closed loop, inputs are generated through
feedback and depend on the initial condition
and on the innovation sequence.

It follows that in feedback systems, measuring the
input helps the estimation of the initial condition
so one should not ignore the input dynamics.
The bias is due to the fact that using the input
dynamics (which we instead disregard) the initial
condition can be estimated more accurately. This
effect disappears for finite-memory systems (i.e. of
the ARX type), see (Chiuso and Picci 2005) for
details.

At this point one might wonder if classical pre-
diction error methods also resent of finite regres-
sion horizon effects or if, under the same circum-
stances, they behave intrinsically better (i.e. do
provide consistent estimates) than subspace meth-
ods. Note that, in order to make the optimization
problem tractable, prediction error methods are
generally based on the stationary predictor (this
is the reason why, for finite data length, PEM
are not equivalent to maximum likelihood even
with Gaussian innovations). However, the differ-
ence between the log-likelihood and the average
prediction error based on the stationary predictor

5 The general structure of finite-interval predictors in the

presence of feedback has been studied in (Chiuso and

Picci 2005) where the explicit expressions are reported.
6 Here we are interested only in the “deterministic” trans-

fer function F (z). Of course different considerations hold
for the Kalman gain K which requires the solution of a

Riccati equation. .

becomes negligible as the data length goes to
infinity. In fact in PEM a time average of some
norm of the (approximate) prediction errors y(t)−
ŷθ(t|t−1), t = 1, .., N each based on data from 0 to
t−1, is minimized. As the data length N tends to
infinity the effect of the terms with “wrong” initial
condition on the predictors is O(1/N) and can
be neglected asymptotically in the optimization.
On the other hand, in subspace methods, unless
the “past horizon” t − t0 is made to grow loga-
rithmically with N (see for instance (Bauer and
Ljung 2001)), some bias will be present. It should
however be kept in mind that the computational
complexity of subspace algorithms grows signifi-
cantly when enlarging the past horizon and the
problem becomes even more relevant for MIMO
systems, which are the principal application area
of subspace methods.
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Asymptotic Variance vs. Sample Variance

Fig. 1. Asymptotic Variance (Monte Carlo es-
timate) vs. normalized frequency (ω ∈
[0, π]) Solid with triangles (4) PEM, dashed
with stars stars (∗): “innovation estimation”,
dashed with crosses (+) “predictor-based” al-
gorithm, dashed with circles (o): Jansson’s al-
gorithm, dotted with crosses (+): asymptotic
variance for “predictor-based”, dotted with
stars (∗): asymptotic variance for “innovation
estimation”.

4. SIMULATION RESULTS

In this section we report some simulation results.
We consider the first order ARMAX model

x(t+ 1) = 0.7x(t) + u(t) + e(t)
y(t) = x(t) + e(t)

driven by the input process (note there is feed-
back)

u(t) = 5n(t)− 1.5y(t)

where n(t) and e(t) are uncorrelated unit vari-
ance white noises. We compare the Monte Carlo
estimate (over 500 trials with N = 1000 data
points each) of the transfer function variance (nor-
malized by N) of several algorithms (see figure
description) with the asymptotic variance formu-
las obtained in (Chiuso 2004) and the Cramér



Rao lower bound. Both the algorithm based on
the predictor and Jansson’s approach are indis-
tinguishable from PEM.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we have shown that with an infinite
amount of data (esp. with infinite past data),
subspace identification of feedback systems could
be implemented successfully, based on the idea of
predictor model identification. In the more realis-
tic case of a finite past horizon t−t0, the estimates
turn out to be generally biased, the amount of bias
decreasing as the length of chosen past horizon
increases. Computations based on the asymptotic
variance expressions found in (Chiuso 2004) show
that neither the “predictor based algorithm” nor
the “whitening filter” algorithm are efficient in
general. Future work will address these aspects.
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