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Politècnica de Catalunya. Jordi Girona, 1-3. 08034

Barcelona. Spain.

Abstract: The last few years witnessed an increasing interest in the problem of
control synthesis of nonlinear systems. A recently derived stability criterion for
nonlinear systems –which has a remarkable convexity property– and the develop-
ment of numerical methods for verification of positivity allows the computation
–via semidefinite programming– of stabilizing controllers for the case of systems
with polynomial or rational vector fields. Using the theory of semialgebraic sets
these computational tools are extended in this paper for the case of polynomial or
rational systems with uncertainty parameters. Copyright c©2005 IFAC
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1. INTRODUCTION

Analysis and control of nonlinear systems are
among the most challenging problems in systems
and control theory. Despite many years of re-
search, the stability and performance of nonlinear
systems is an open problem and there is still no
universal methodology for constructing controllers
that stabilize such systems.

In this respect, Lyapunov functions have long
been recognized as one of the most fundamental
analytical tools for analysis and synthesis of non-
linear control systems; see, for example (Krstić et

al., 1995; Isidori, 1995).
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Thanks to a strong development of computa-
tional tools based on Lyapunov functions, there
are many methods based on convex optimization,
exploiting the fact that the set of Lyapunov func-
tions for a given system is convex.

However, a serious obstacle in the problem of
control synthesis of nonlinear systems is that
the joint search for the controller u(x) and a
Lyapunov function V (x) is not convex. Consider,
for instance, the synthesis problem for the system

ẋ = f(x) + g(x)u.

The set of u and V satisfying the condition

∂V

∂x
[f(x) + g(x)u(x)] < 0

is not convex and could be even not connected
(Prieur and Praly, 1999).

The convergence criterion presented in (Rantzer,
2001) based on the density function ρ has a



remarkable convexity property. Indeed, the set of
(ρ, uρ) satisfying the dual criterion or divergence
inequality

∇ · [ρ(f + gu)] > 0 (1)

is convex. This convexity property will be ex-
ploited in the computation of stabilizing con-
trollers. Recent numerical methods for verification
of positivity of multivariate polynomials based on
sum of squares decompositions are used (Prajna
et al., 2002; Prajna et al., 2004b).

In this paper, these computational tools are ex-
tended, thanks to the theory of semialgebraic sets,
for the case of polynomial or rational systems
with uncertainty parameters. This theory allows
to consider the uncertain parameters as new poly-
nomial variables, but the dynamic of the system
is not augmented. This way, our objective is to
find a worst case controller, in the sense that the
system is stabilized for all the possible values of
the uncertain parameters.

The outline of the paper is as follows. The sum
of squares relaxations and the dual theorem of
Lyapunov that allows the computation of stabiliz-
ing controllers of polynomial or rational systems
are presented in Section 2. The Putinar’s theorem
and the extension of the computational tools for
the case of systems with uncertainty parameters
are fully developed in Section 3. An example is
presented in Section 4. Finally, the paper will be
ended by some conclusions in Section 5.

2. COMPUTATIONAL APPROACH

In order to understand the possibilities and limi-
tations of computational approaches to nonlinear
stability, an issue that has to be addressed is how
to deal numerically with functional inequalities
such as the standard Lyapunov one, or the diver-
gence inequality (1).

2.1 First relaxation: the sum of squares approach

It is well-known that the problem of checking
global nonnegativity of a polynomial of quartic
(or higher) degree is computationally hard, even
in the restricted case of polynomial functions
(Prestel and Delzell, 2001). For this reason, we
need tractable sufficient conditions that guarantee
nonnegativity, and that are not overly conserva-
tive. A particularly interesting sufficient condition
is given by the existence of a sum of squares
decomposition (Parrilo, 2000): can the polynomial
p(x) be written as

p(x) =
∑

i

p2
i
(x),

for some polynomials pi(x)? Obviously, if this is
the case, then p(x) takes only nonnegative values.

In this respect, it is interesting to notice that
many methods used in control theory for con-
structing Lyapunov functions (for example, back-
stepping (Krstić et al., 1995)) use either implicitly
or explicitly a sum of squares approach.

The problem of checking if a given polynomial
can be written as a sum of squares can be solved
via convex optimization, in particular semidefinite
programming. For our purposes, however, it will
enough to know that while the standard semidefi-
nite programming machinery can be interpreted
as searching for a semidefinite element over an
affine family of quadratic forms, the new tools
provide a way of finding a sum of squares, over
an affine family of polynomials. In particular, a
freely available MATLAB toolbox for formulating
and solving sum of squares programs can be used
for this purpose.

2.2 Second relaxation: the dual theorem of

Lyapunov

Lyapunov’s second theorem has long been recog-
nized as one of the most fundamental tools for
analysis and synthesis of nonlinear systems. The
importance of the criterion stems from the fact
that it allows stability of a system to be verified
without solving the differential equation explic-
itly.

Lyapunov’s theorem has a close relative, Theorem
1. The relationship between the two theorems
can be considered as an analogous to the duality
that has been used since 1940s for closely related
problems in calculus of variations.

Theorem 1. Given the equation

ẋ(t) = f(x(t)),

where f ∈ C1(Rn, Rn) and f(0) = 0, suppose there
exists a non-negative ρ ∈ C1(Rn − {0}, R), called
density function, such that

◮
ρ(x)f(x)

|x|
is integrable

on {x ∈ R
n : |x| ≥ 1} and (2)

◮ [∇ · (fρ)] > 0 for almost all x. (3)

Then, for almost all initial states x(0) the tra-
jectory x(t) exists for t ∈ [0,∞) and tends to zero
as t → ∞.

Moreover, if the equilibrium x = 0 is stable,
then the conclusion remains valid even if ρ takes
negative values.

Proof. See (Rantzer, 2001).



2.3 Control synthesis of polynomial systems

Consider the system

ẋ = f(x) + g(x)u

where f(x) and g(x) are polynomial vectors. To
apply the tools presented previously to the sta-
bilization of this system, consider the following
parameterized representation for ρ and uρ:

ρ(x) =
a(x)

b(x)α
, u(x)ρ(x) =

c(x)

b(x)α
,

where a(x), b(x), c(x) are polynomials, b(x) is pos-
itive, and α is chosen large enough so as to satisfy
the integrability condition (2) in Theorem 1. Note
that by choosing this particular representation, we
presuppose that we will be searching for ρ and
u that are rationals. In particular, the resulting
control law will be

u(x) =
c(x)

a(x)
.

In this case, the divergence criterion can be writ-
ten as

∇ · [ρ(f + gu)] = ∇ ·

[

1

bα
(fa + gc)

]

= −α
1

bα+1
∇b · (fa + gc) +

1

bα
∇ · (fa + gc)

=
1

bα+1
[b∇ · (fa + gc) − α∇b · (fa + gc)] .

Since b is positive, we only need to satisfy the
inequality

b∇ · (fa + gc) − α∇b · (fa + gc) > 0. (4)

For fixed b, α, the inequality (4) is linear in a

and c. Instead of checking positivity, we check
that the left-hand side is a sum of squares, and
then the problem can be solved using semidefinite
programming.

2.4 Control synthesis of rational systems

Consider the system

ẋ = f(x) + g(x)u

where f(x) and g(x) are vectors whose compo-
nents are ratios of polynomials. Without loss of
generality, we can consider that

f(x) =
f̃(x)

h(x)
, g(x) =

g̃(x)

h(x)
,

where f̃(x), g̃(x) and h(x) are polynomial expres-
sions.

To apply in this case the tools presented in the
previous sections to the stabilization of this sys-
tem, consider also the following parameterized
representation for ρ and uρ:

ρ(x) =
a(x)

b(x)α
, u(x)ρ(x) =

c(x)

b(x)α
,

where a(x), b(x), c(x) are polynomials, b(x) is pos-
itive, and α is chosen large enough so as to satisfy
the integrability condition (2) in Theorem 1. The
resulting control law will be

u(x) =
c(x)

a(x)
.

In this case, the divergence criterion presented in
Theorem 1 can be written as can be seen in Figure
1.

Since both b(x) and h(x)2 are positive, we only
need to satisfy the inequality

bh∇ · (f̃a + g̃c) − (αh∇b + b∇h) · (f̃a + g̃c) > 0.

(5)

For fixed b, α, the inequality is linear in a and c

and the problem can be solved using semidefinite
programming as in the previous section.

3. UNCERTAIN PARAMETERS

A question that arises naturally at this point is:
the computational tools presented in the previous
sections can be employed to stabilize systems with
uncertain parameters?

With the help of the theory of semialgebraic sets
this can be done by considering the uncertain
parameters as new polynomial variables (pseudo-

variables) and without augmenting the dynamic
of the system. This way, our objective is to find a
worst case controller, in the sense that the system
will be stabilized for all the possible values of the
uncertain parameters.

In order to formalize all these questions, we must
introduce some notation and a key theorem.

Definition 1. Let Σ2 ⊂ R[x1, . . . , xn] =: A denote
the set of polynomials which can be written as a
sum of squares of other polynomials, that is,

Σ2 := {G(x) ∈ A : ∃hi(x) ∈ A

such that G(x) =

m
∑

i=1

hi(x)2}.

Definition 2. A subset of R
n which is a finite

Boolean combination of sets of the form {x =
(x1, . . . , xn) : p(x) > 0} and {x : q(x) =
0}, where p, q ∈ R[x1, . . . , xn] –i.e. a set that is
defined by polynomial inequalities, equalities, and
nonequalities– is called a semialgebraic set.

Theorem 2. (Putinar). Suppose we are given a set

K := {x ∈ R
n : ci(x) ≥ 0, i = 1, . . . ,m} (6)

that is compact, and furthermore satisfies the
condition that there exists a polynomial h(x) of
the form



∇ · [ρ(f + gu)] = ∇ ·

[

1

bαh
(f̃a + g̃c)

]

=
bh

bα+1h2
∇ · (f̃a + g̃c) + ∇

1

bαh
· (f̃a + g̃c)

=
1

bα+1h2

[

bh∇ · (f̃a + g̃c) − (αh∇b + b∇h) · (f̃a + g̃c)
]

.

Fig. 1. The divergence criterion in the rational case.

h(x) = s0(x) +

m
∑

i=1

si(x) · ci(x),

where the si ∈ Σ2 are sum of squares and ci ∈
R[x], whose level set

{x ∈ R
n : h(x) ≥ 0}

is compact. Then, for any polynomial G(x) pos-
itive on all of K, there exist s0, s1, . . . , sm ∈ Σ2,
such that

G(x) = s0(x) +

m
∑

i=1

si(x) · ci(x).

Proof. See (Putinar, 1993).

It is worth noting that for a large host of ap-
plications, the additional constraint required for
Theorem 2 is easily satisfied by the corresponding
sets K. For instance, the following cases fall into
this category.

1. Suppose some ci in the definition of K sat-
isfies, on its own, the condition {ci(x) ≥
0} compact. Then Theorem 2 applies. This
includes any instance where we are taking
intersections with ellipses, or circles, among
others.

2. If K is compact, and is defined only by linear
functions, then we can directly apply Theo-
rem 2. Note that this includes all polytopes.

3. If we know that the compact set K lies inside
some ball of radius R, we can simply add the
interior of the ball,

∑

i
x2

i
≤ R2 as a redun-

dant constraint, thus not changing K, but
automatically satisfying Theorem 2, without
appreciably changing the size of definition of
the problem (especially if we already have a
large number of functions defining K).

In what follows we assume that the set K defined
as in equation (6) satisfies the hypotheses of the
Theorem 2. Using this theorem, we translate the
pointwise property

G(x) > 0, ∀x ∈ K (7)

to the algebraic property

∃s1, . . . , sm ∈ Σ2 such that
(

G(x) −

m
∑

i=1

si(x)ci(x)

)

∈ Σ2. (8)

The membership test in equation (8) can be
performed in time polynomial in the size of the
polynomial G(x) using the computational tools
presented in (Prajna et al., 2002).

3.1 Synthesis procedure

Consider the nonlinear affine system

ẋ = f(x, p) + g(x, p)u, (9)

where x ∈ R
n is the state vector, p = (p1, . . . , pm) ∈

R
m is the uncertainty parameter vector and f, g :

R
n × R

m → R
n are polynomial functions de-

scribing the system dynamics. We are searching
a controller u that stabilizes the system for all the
possible values of the parameter p.

We assume that the following intervals are known:

p
i
≤ pi ≤ p

i
, i = 1, . . . ,m. (10)

Equation (10) can be expressed as

c1 = p1 − p
1
≥ 0,

c2 = p1 − p1 ≥ 0,

...

c2m−1 = pm − p
m

≥ 0,

c2m = p
m
− pm ≥ 0.

For compactness, we also assume that the state
vector x lies inside some ball of radius M :

c2m+1 = M −
n
∑

i=1

x2
i
≤ 0.

This way, the set K can be defined as

K = {(x, p) ∈ R
n+m : c1 ≥ 0, . . . , c2m+1 ≥ 0}.

Let us define x̃ = [x, p]T. The system (9) is now

ẋ = f(x̃) + g(x̃)u. (11)

To apply the tools presented in Section 2 to
the stabilization of the system (11), consider the
parameterized representation for ρ and uρ:

ρ(x) =
a(x)

b(x)α
, u(x)ρ(x) =

c(x)

b(x)α
,

where a(x), b(x), c(x) are polynomials, b(x) is pos-
itive, and α is chosen large enough so as to satisfy
the integrability condition in Theorem 1.



Remark 1. a(x), b(x) and c(x) are chosen as poly-
nomials only in the variable x. This way, the
controller of the system does not depend on p.

In this case, the divergence criterion can be writ-
ten as

∇n · [ρ(f + gu)] =

= ∇n ·

[

1

bα
(fa + gc)

]

= −α
1

bα+1
∇nb · (fa + gc) +

1

bα
∇n · (fa + gc)

=
1

bα+1
[b∇n · (fa + gc) − α∇nb · (fa + gc)] .

where the following modified versions of the op-
erators gradient and divergence have been consid-
ered:

∇nV =

[

∂V

∂x1

· · ·
∂V

∂xn

]

, V : R
n × R

m → R

∇n · f =
∂f1

∂x1

+ · · · +
∂fn

∂xn

, f : R
n × R

m → R
n.

Since b is positive, we only need to satisfy the
inequality

G(x̃) :=b∇n · (fa + gc) − α∇nb · (fa + gc) > 0,

∀(x, p) ∈ K. (12)

Although the system contains uncertain parame-
ters, the explicit expressions of the functions f

and g are known and so equation (12) can be
computationally treated.

For fixed b, α, the inequality is linear in a, c. In-
stead of checking positivity, we check that the left-
hand side is a sum of squares. Using Theorem 2
and, more precisely, equation (8), the pointwise
property (12) is translated to the algebraic prop-
erty

∃s1, . . . , s2m+1 ∈ Σ2 such that
(

G(x̃) −
2m
∑

i=1

si(x)ci

)

∈ Σ2,

that can be performed in polynomial time using
the computational tools presented in (Prajna et

al., 2002).

4. A SIMPLE EXAMPLE

4.1 Example 1

In order to show the applicability of the compu-
tational approach described in Section 3, let us
consider the following nonlinear system with an
uncertain parameter as the coefficient of the linear
term in the first equation:

ẋ1 = px2 − x3
1 + x2

1, p ∈ [0.7, 1.3]

ẋ2 = u

0.4 0.2 0 0.2 0.4 0.6 0.8 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

Fig. 2. Phase plot of the closed-loop system in
Section 4.1. Solid curves are trajectories with
initial conditions (x1, x2) = (1, 0) and for
four different values for the parameter p,
0.7, 0.9, 1.1 and 1.3.

The system is defined by polynomial expressions
in the variables x1, x2 and, for computational
purposes, p can be treated as a third variable.

Our objective is to find a control function u that
stabilizes the system for every p ∈ [0.7, 1.3]. Such
a control law u for this system can be found using
the techniques described in Section 2. We only
need to satisfy the inequality (12) in the case
n = 2, that is

G(x, p) =b∇2 · (fa + gc) − α∇2b · (fa + gc) > 0,

∀(x, p) ∈ K (13)

where

f(x1, x2, p) =

[

px2 − x3
1 + x2

1

0

]

,

g(x1, x2, p) =

[

0
1

]

,

and b can be chosen as it is described in (Prajna
et al., 2004c)

b(x1, x2) = 3x2
1 + 2x1x2 + 2x2

2

= (x1 + x2)
2 + 2x2

1 + x2
2.

Since we will be using a cubic polynomial for
c(x1, x2), and a(x1, x2) is taken to be a constant,
we choose α = 5 to satisfy the integrability
condition. We note that G(x, p) can be considered
as a polynomial expression in R[x1, x2, p].

K is defined as follows

K = {(x, p) ∈ R
2 × R : c1 ≥ 0, c2 ≥ 0, c3 ≥ 0},

where

c1 = 1.3 − p,

c2 = p − 0.7,

c3 = M − ‖x‖2
2, M > 0.

We translate the equation (13) to the algebraic
property



∃s1, s2, s3 ∈ Σ2 such that

(G(x, p) − s1(x)c1 − s2(x)c2 − s3(x)c3) ∈ Σ2.

After solving the sum of squares problem, the
results are

u(x) = −1.3446x1 − 0.9005x2 − 0.0902x3
2,

s1(x) = 6.2496x2
1 + 14.695x2

2 + 19.1664x1x2

= (1.37x1 + 2.09x2)
2 + (2.09x1 + 3.21x2)

2,

s2(x) = 6.2496x2
1 + 4.695x2

2 − 10.8336x1x2

= (1.89x1 − 1.64x2)
2 + (1.42x2 − 1.64x1)

2.

See Figure 2 for a phase plot of the closed-loop
system.

5. CONCLUDING REMARKS

A recently derived stability criterion for nonlinear
systems (Rantzer, 2001) and the development of
numerical methods for verification of positivity
(Prajna et al., 2002) has made possible to state
the synthesis problem in terms of convex opti-
mization. Using the compactness of semialgebraic
sets (Putinar, 1993) these tools have been ex-
tended for the case of polynomial or rational sys-
tems with uncertainty parameters. The size of the
semidefinite programs makes it possible to handle
problems that are otherwise too large to solve
using state-of-the-art semidefinite programming
solvers.
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