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Abstract: This paper is concerned with the analysis of a recently-proposed
robust control policy for linear discrete-time systems subject to bounded state
disturbances with mixed constraints on the states and inputs, which parameterizes
the input as an affine function of the past disturbance sequence. The paper
shows that this disturbance feedback policy is equivalent to the class of affine
state feedback policies with memory of prior states, and thus subsumes the well-
known classes of open-loop and pre-stabilising control policies. Furthermore, the
parameterization transforms the non-convex problem of finding an admissible state
feedback policy to an equivalent and tractable convex problem.
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1. INTRODUCTION

The problem of finding a nonlinear state feed-
back control law, which guarantees that a set of
state and input constraints are satisfied for all
time, despite the presence of a persistent state
disturbance, has been the subject of study for
many authors (Bemporad et al., 2003; Glover
and Schweppe, 1971; Bertsekas and Rhodes, 1971;
Blanchini, 1999; Mayne et al., 2000; Mayne,
2001; Mayne and Schroeder, 1996; Scokaert and
Mayne, 1998; Diehl and Björnberg, 2004). How-
ever, the problem is that the solutions offered
to date are exponentially complex or intractable
for online implementation. As a consequence,
many researchers have proposed compromise so-
lutions, which, though not able to guarantee the
same level of performance, are computationally
tractable (Bemporad, 1998; Chisci et al., 2001;

Lee and Kouvaritakis, 1999; Langson et al., 2004;
Smith, 2004).

We propose a nonlinear control scheme that is
implemented by selecting from amongst the set
of constraint-admissible affine state feedback poli-
cies at each stage. Such a scheme subsumes the
well known classes of “pre-stabilizing” (Lee and
Kouvaritakis, 1999; Chisci et al., 2001) and “open-
loop” (Mayne et al., 2000, Sect. 4.5) policies for
robust control of constrained systems. We demon-
strate via a simple example that, if implemented
directly, this scheme is problematic due to non-
convexity in the set of constraint-admissible state-
feedback policies.

We therefore exploit a recently-proposed method
for solving so-called robust optimization problems
with hard constraints (Ben-Tal et al., 2002; Gus-
litser, 2002). The authors proposed that, instead
of solving for a general, nonlinear function that



guarantees that the constraints are met for all val-
ues of the uncertainty, one could aim to formulate
a control policy that is an affine function of the
uncertainty.

This type of parameterization appears to have
originally been suggested some time ago within
the context of stochastic programs with re-
course (Gartska and Wets, 1974). More recently,
it has also been revisited as a way of finding
solutions to robust model predictive control prob-
lems (Löfberg, 2003; van Hessem and Bosgra,
2002; van Hessem, 2004).

We prove that this affine uncertainty parameter-
ization is equivalent to an affine state feedback
parameterization, and that the proposed scheme
enables a convex reformulation of the non-convex
problem of finding a constraint-admissible affine
state feedback control policy. A feasible robust
control policy can thus be calculated using convex
optimization techniques.

Notation: For matrices A and B, A ⊗ B is
the Kronecker product of A and B, A† is the
one-sided or pseudo-inverse of A, and A ≤ B

denotes element-wise inequality and abs(A) is the
element-wise absolute value of A. A matrix, not
necessarily square, is referred to as (strictly) lower
triangular if the (i, j) entry is zero for all i < j

(i ≤ j). A block partitioned matrix is referred
to as (strictly) block lower triangular if the (i, j)
block is zero when i < j (i ≤ j); note that a block
lower triangular matrix is not necessarily lower
triangular. Z[k,l] represents the set of integers
{k, k + 1, . . . , l}. 1 is a column vector of ones. For
vectors x and y, vec(x, y) := [xT yT ]T .

2. DEFINITIONS AND STANDING
ASSUMPTIONS

Consider the following discrete-time LTI system:

x+ = Ax + Bu + w, (1)

where x ∈ R
n is the system state at the current

time instant, x+ is the state at the next time
instant, u ∈ R

m is the control input and w ∈ R
n

is the disturbance 1 . It is assumed that (A, B)
is stabilizable and that at each sample instant a
measurement of the state is available. The current
and future values of the disturbance are unknown
and may change unpredictably from one time
instant to the next, but are contained in a convex
and compact (closed and bounded) set W .

The system is subject to mixed constraints on the
state and input:

Z := {(x, u) ∈ R
n × R

m | Cx + Du ≤ b} , (2)

1 This assumption on the disturbance is without loss of

generality; the results in this paper are easily generalized

to the case where x+ = Ax + Bu + Ew.

where the matrices C ∈ R
s×n, D ∈ R

s×m and the
vector b ∈ R

s; s is the number of affine inequality
constraints that define Z . A design goal is to
guarantee that the state and input of the closed-
loop system remain in Z for all time and for all
allowable disturbance sequences.

In addition to Z , a target/terminal constraint set
Xf is given by

Xf := {x ∈ R
n | Y x ≤ z } , (3)

where the matrix Y ∈ R
r×n and the vector

z ∈ R
r; r is the number of affine inequality

constraints that define Xf . It is also assumed
that Xf is bounded and contains the origin in
its interior. The set Xf can be used as a target
set in time-optimal control or to define a receding
horizon controller with guaranteed invariance and
stability properties (Goulart et al., 2005).

Before proceeding, we define some additional no-
tation. In the sequel, predictions of the system’s
evolution over a finite control/planning horizon
will be used to define a number of suitable control
policies. Let the length N of this planning horizon
be a positive integer and define stacked versions of
the predicted input, state and disturbance vectors
u ∈ R

mN , x ∈ R
n(N+1) and w ∈ R

nN , respec-
tively, as

x := vec(x0, . . . , xN ), (4a)

u := vec(u0, . . . , uN−1), (4b)

w := vec(w0, . . . , wN−1), (4c)

where x0 = x denotes the current measured
value of the state and xi+1 := Axi + Bui + wi,
i ∈ {0, . . . , N − 1} denote the prediction of the
state after i time instants into the future. Finally,
let the set W := W N := W × · · · × W , so that
w ∈ W .

3. AFFINE STATE FEEDBACK
PARAMETERIZATION

One natural approach to controlling the system
in (1), while ensuring the satisfaction of the con-
straints, is to search over the set of affine state
feedback control policies with memory of prior
states:

ui =

i
∑

j=0

Li,jxj + gi, ∀i ∈ Z[0,N−1], (5)

where each Li,j ∈ R
m×n and gi ∈ R

m. For
notational convenience, we also define the block
lower triangular matrix L ∈ R

mN×n(N+1) and
stacked vector g ∈ R

mN as

L :=





L0,0 0 · · · 0

.

.

.
. . .

. . .
.
.
.

LN−1,0 · · · LN−1,N−1 0



, (6a)



and
g := vec(g0, . . . , gN−1), (6b)

so that the control input sequence can be written
as

u = Lx + g. (7)

For a given initial state x, we say that the pair
(L,g) is admissible if the control policy (5) guar-
antees that for all allowable disturbance sequences
of length N , the constraints (2) are satisfied over
the horizon i = 0, . . . , N−1 and that the state is in
the target set (3) at the end of the horizon. More
precisely, the set of admissible (L,g) is defined as

Πsf
N (x) :=
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(L,g) satisfies (6), x = x0

xi+1 = Axi + Bui + wi

ui =
∑i

j=0
Li,jxj + gi

(xi, ui) ∈ Z , xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W



























.

(8)
The set of initial states x for which an admissible
control policy of the form (5) exists is defined as

X
sf
N :=

{

x ∈ R
n

∣

∣

∣
Πsf

N (x) 6= ∅
}

. (9)

It is critical to note that it is generally not possible
to select a single (L,g) such that it is admissible

for all x ∈ X
sf
N . Indeed, it is possible that for some

pair (x, x̃) ∈ X
sf
N × X

sf
N , Πsf

N (x)
⋂

Πsf
N (x̃) = ∅.

For problems of non-trivial size, it is therefore
necessary to calculate an admissible pair (L,g)
on-line, given a measurement of the current state.

Once an admissible control policy is computed
for the current state, it can then be implemented
either in a time-varying, time-optimal or receding-
horizon fashion. In general, the implemented con-
trol policy will be a nonlinear function with re-
spect to the initial state, even though it may have
been defined in terms of the class of affine state
feedback policies (5).

Remark 1. Note that the state feedback pol-
icy (5) subsumes the well-known class of “pre-
stabilizing” control policies (Lee and Kouvari-
takis, 1999; Chisci et al., 2001), in which the
control policy takes the form ui = Kxi +ci, where
K is computed off-line and only ci is computed
on-line.

Computing an admissible pair (L,g), given the
current state x, is seemingly a very difficult prob-
lem, due to the following property:

Proposition 2. (Non-convexity). For a given state

x ∈ X
sf
N , the set of admissible affine state feed-

back control parameters Πsf
N (x) is non-convex, in

general.

This is easily shown by the following example:

Fig. 1. Non-Convexity of Πsf
N (0) in Example 3

Example 3. Consider the SISO system

x+ = x + u + w

with initial state x0 = 0, input constraint |u| ≤ 3,
bounded disturbances |w| ≤ 1 and a planning
horizon of N = 3. Consider a control policy of
the form (5) with g = 0 and L2,1 = 0, so that
u0 = 0 and

u1 = L1,1w0

u2 = [L2,2(1 + L1,1)] w0 + L2,2w1

In order to satisfy the input constraints for all
allowable disturbance sequences, the controls ui

must satisfy

|ui| ≤ 3, i = 1, 2, ∀w ∈ W

or, equivalently,

max
w∈W

|ui| ≤ 3, i = 1, 2.

Since the constraints on the components of w are
independent, it is easy to show that the input
constraints are satisfied for all w ∈ W if and only
if

|L1,1| ≤ 3

|L2,2(1 + L1,1)| + |L2,2| ≤ 3.

It is straightforward to verify that the set of
gains L, which satisfy these constraints, is non-
convex for this problem; the set of admissible
values for (L1,1, L2,2) is shown in Figure 1.

Despite the fact that the set of admissible param-
eters Πsf

N (x) may be non-convex, we will proceed
to show that one can actually find an admissible
(L,g) by solving a single, tractable and convex
programming problem using an appropriate repa-
rameterization. We introduce this parameteriza-
tion in the next section.



4. AFFINE DISTURBANCE FEEDBACK
PARAMETERIZATION

An alternative to (5) is to parameterize the control
policy as an affine function of the sequence of past
disturbances, so that

ui =

i−1
∑

j=0

Mi,jwj + vi, ∀i ∈ Z[0,N−1], (10)

where each Mi,j ∈ R
m×n and vi ∈ R

m. It should
be noted that, since full state feedback is assumed,
the past disturbance sequence is easily calculated
as the difference between the predicted and actual
states at each step, i.e.

wi = xi+1 − Axi − Bui, ∀i ∈ Z[0,N−1]. (11)

For notational convenience, we define the vector
v ∈ R

mN and the strictly block lower triangular
matrix M ∈ R

mN×nN such that

M :=









0 · · · · · · 0

M1,0 0 · · · 0

.

.

.
. . .

. . .
.
.
.

MN−1,0 · · · MN−1,N−2 0









(12a)

and
v := vec(v0, . . . , vN−1), (12b)

so that the control input sequence can be written
as

u = Mw + v. (13)

For a given initial state x, we say that the pair
(M,v) is admissible if the control policy (10)
guarantees that for all allowable disturbance se-
quences of length N , the constraints (2) are sat-
isfied over the horizon i = 0, . . . , N − 1 and that
the state is in the target set (3) at the end of
the horizon. More precisely, the set of admissible
(M,v) is defined as

Πdf
N (x) :=
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Mi,jwj + vi

(xi, ui) ∈ Z , xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W



























.

(14)

The set of initial states x for which an admissible
control policy of the form (10) exists is defined as

X
df
N :=

{

x ∈ R
n

∣

∣

∣
Πdf

N (x) 6= ∅
}

. (15)

Before proceeding, we note that Πdf
N (x) can be ex-

pressed more compactly by eliminating the state
variables and defining matrices E ∈ R

n(N+1)×nN

and A ∈ R
n(N+1)×n as

E :=











0 0 · · · 0

I 0 · · · 0

A I · · · 0

.

.

.
.
.
.

. . .
.
.
.

A
N−1

A
N−2

· · · I











, A :=











I

A

A
2

.

.

.

A
N











, (16)

and B ∈ R
n(N+1)×mN , C ∈ R

(qN+r)×n(N+1)

and D ∈ R
(qN+r)×mN as B := E(I ⊗ B),

C :=

[

(I ⊗ C) 0
0 Y

]

, D :=

[

(I ⊗ D)
0

]

.

By further defining F := CB + D, G := CE,
T := −CA, and c := vec(1⊗ b, z), the expression

for Πdf
N (x) becomes

Πdf
N (x) =







(M,v)

∣

∣

∣

∣

∣

∣

(M,v) satisfies (12)
Fv+(FM+G)w≤ c+Tx

∀w ∈ W







.

(17)

4.1 Convexity of Πdf
N (x)

The main advantage of the disturbance feedback
parameterization in (10) over the state feedback
parameterization in (5) is formalized in the fol-
lowing statement:

Proposition 4. (Convexity). For a given state x ∈

X
df
N , the set of admissible affine disturbance feed-

back parameters Πdf
N (x) is convex and closed.

Furthermore, the set of states X
df
N , for which at

least one admissible affine disturbance feedback
parameter exists, is also convex and closed.

PROOF. Consider the set

CN :=







(M,v, x)

∣

∣

∣

∣

∣

∣

(M,v) satisfies (12)
Fv+(FM+G)w≤ c+Tx

∀w ∈ W







which is closed and convex, since it can be written
as the intersection of closed and convex sets:

CN =
⋂

w∈W

{

(M,v, x)

∣

∣

∣

∣

(M,v) satisfies (12)
Fv+(FM+G)w≤ c+Tx

}

.

The sets Πdf
N (x) and X

df
N are just projections

of this closed and convex set onto suitably de-
fined subspaces, and are thus also closed and con-
vex. 2

This result is of fundamental importance. If W
is convex and compact, then it is conceptually
possible to compute a pair (M,v) ∈ Πdf

N (x) in a
computationally tractable way, given the current
state x. For example, if W is a polytope, then an
admissible policy may be found by solving a single
LP in a tractable number of decision variables
and constraints(Ben-Tal et al., 2002). If W is an
ellipsoid, an admissible policy may be found via
a tractable SOCP. See (Goulart et al., 2005) for
further details and examples.

Remark 5. Note that the proof of Proposition 4
does not require W to be convex. However, con-
vexity of W is important for the efficient compu-
tation of an admissible pair (M,v).



5. EQUIVALENCE BETWEEN STATE AND
DISTURBANCE FEEDBACK

PARAMETERIZATIONS

Having introduced both the non-convex state
feedback and convex disturbance feedback param-
eterizations, we arrive at our main result.

Theorem 6. The set of admissible states X
df
N =

X
sf
N . Additionally, for any admissible (L,g) an

admissible (M,v) can be found that yields the
same input and state sequence for all allowable
disturbance sequences, and vice-versa.

PROOF. The set equality is established by
showing both X

sf
N ⊆ X

df
N and X

df
N ⊆ X

sf
N .

X
sf
N ⊆ X

df
N : By definition, for a given x ∈ X

sf
N ,

there exists a pair (L,g) that satisfies the con-
straints in (8). For a given disturbance sequence
w ∈ W , the states of the system may be written
as

x = Ax + Bu + Ew.

Given the pair (L,g), the inputs and states can
be written as:

u = Lx + g

x = B(Lx + g) + Ew + Ax

= (I −BL)−1(Bg + Ew + Ax)

The matrix I − BL is always non-singular, since
BL is strictly block lower triangular. The control
sequence can then be rewritten as an affine func-
tion of the disturbance sequence w:

u = L(I−BL)−1(Bg+Ax)+L(I−BL)−1Ew+g,

and an admissible (M,v) constructed by choosing

M = L(I −BL)−1E (18a)

v = L(I −BL)−1(Bg + Ax) + g. (18b)

This choice of (M,v) gives exactly the same
input sequence as the pair (L,g), so the state
and input constraints in (14) are satisfied. The
constraint (12) that M be strictly block lower
triangular is satisfied because M is chosen in (18)
as a product of the block lower triangular matrices
(I − BL)−1 and L and the strictly block lower

triangular matrix E. Therefore, (M,v) ∈ Πdf
N (x)

and thus x ∈ X
sf
N ⇒ x ∈ X

df
N .

X
df
N ⊆ X

sf
N : By definition, for a given x ∈ X

df
N ,

there exists a pair (M,v) that satisfies the con-
straints in (14). For a given disturbance sequence
w ∈ W , the inputs and states of the system can
be written as:

u = Mw + v

x = B(Mw + v) + Ew + Ax

Recall that since full state feedback is assumed,
the disturbances can be determined exactly from

wi = xi+1 − Axi − Bui, ∀i ∈ Z[0,N−1],

which can be written in matrix form as

w=

















0 I 0 · · · · · · 0

0 −A I 0
. . .
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0 0 −A I
. . .
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0 · · · · · · 0 −A I
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Ax+(I⊗B)u,

or more compactly as

w = E†x − IAx + E†Bu,

where I := [I 0 · · · 0]T . It is easy to verify that
the matrices E† and IT are left inverses of E and
A respectively, so that E†E = I and IT A = I .

The input sequence can then be rewritten as

u = M(E†x − IAx + E†Bu) + v

= (I −ME†B)−1(ME†x −MIAx + v).

The matrix I − ME†B is non-singular because
the product ME†B = M(I ⊗ B) is strictly block
lower triangular. An admissible (L,g) can then be
constructed by choosing

L = (I −ME†B)−1ME† (19a)

g = (I −ME†B)−1(v −MIAx). (19b)

This choice of (L,g) gives exactly the same input
sequence as the pair (M,v), so the state and input
constraints in (8) are satisfied. The constraint that
L be block lower triangular is satisfied because it
is the product of block lower triangular matrices.
Therefore, (L,g) ∈ Πsf

N (x) and thus x ∈ X
df
N ⇒

x ∈ X
sf
N . 2

Remark 7. It is important to note that the result
in Theorem 6 will general not hold if additional
structural restrictions are placed on M or L

(e.g. that one or both be banded and/or block-
Toeplitz), because the nonlinear transformations
in (18) and (19) only allow a limited number of
structural constraints to be preserved.

We conclude this section by comparing Theorem 6
with Proposition 4. This leads immediately to the
following result, which, in the light of Proposi-
tion 2, is rather surprising:

Corollary 8. (Convexity of X
sf
N ). The set of states

X
sf
N , for which an admissible affine state feedback

policy of the form (5) exists, is closed and convex.

6. CONCLUSIONS

We have demonstrated that the disturbance feed-
back policy defined in Section 4 is a convex repa-
rameterization of an affine state feedback policy



with memory of prior states. This result allows
for computation of an admissible robust control
policy using standard convex optimization tech-
niques. It would be interesting to see if it is possi-
ble to derive a similar convex reparameterization
in the case where the control at each stage is an
affine function of the current state only.

The set description in (17) may be extended to
exploit any additional structure inherent in the
robust finite horizon control problem for different
classes of disturbance; some results along these
lines are already available for a class of problems
with ∞-norm bounded disturbances (Goulart and
Kerrigan, 2005).
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