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Abstract: The problem of path planning for unmanned combat aerial vehicles
(UCAVs) in the presence of radar-guided surface-to-air missiles (SAMs) is treated.
The problem is formulated in the framework of the model, which includes three
subsystems: the aircraft, the radar, and the missile. Based on this model, the
problem of UCAV path planning is formulated as a minimax optimal control
problem, with the aircraft lateral acceleration serving as control. Necessary
conditions of optimality for this minimax problem are derived and utilized as a
basis for an efficient numerical solution. Illustrative examples are considered that
confirm standard flying tactics of “denying range, aspect, and aim,” by yielding
flight paths that “weave” to avoid long exposures. Copyright c©2005 IFAC.
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1. INTRODUCTION

This paper is devoted to the problem of au-
tomated path planning for Unmanned Combat
Aerial Vehicles (UCAVs) in the presence of radar-
guided Surface-to-Air Missiles (SAMs). This prob-
lem features the interaction between three sub-
systems: the aircraft and its characteristics, the
radar and its capabilities, and the missile and
its lethality. Therefore, the solution of the UCAV
path planning problem requires realistic models
of these three subsystems. Although the current
literature offers models for each of them sepa-
rately, there is no approach that integrates models
of the three subsystems in a unified framework.
The purpose of this paper is to propose such an
integrated model, formulate path planning as a
minimax optimization problem, derive necessary
conditions for its solution, and use them in an
efficient numerical procedure.

The literature related to UAV path planning can
be divided in two groups. The first group treats
the problem under the assumption of isotropic
(i.e., independent of aspect and bank angles)
Radar Cross Section (RCS), while the second as-
sumes non-isotropic RCS. Due to space limita-
tions, only representative publications are cited
here, while a more complete review can be found
in (Kabamba et al., 2004).

In the case of isotropic RCS, the path planning
problem has been addressed based on minimiz-
ing the total reflected energy received by the
radar (Pachter and Hebert, 2001). Other methods
include the use of Voronoi diagrams (Chandler
et al., 2000), singular perturbations (Rao et al.,
1990), and wavelets (Godbole et al., 2000).

For the case of non-isotropic RCS, the problem
has been addressed using potential field meth-



ods (McFarland et al., 1999) and virtual forces
(Bortoff, 2000). The work of (Moore, 2002) opti-
mized the aircraft bank and yaw angles within
aerodynamic restrictions for a given route. Fi-
nally, (Misovec et al., 2003) models the detection
probability as being dependent on azimuth, ele-
vation, and slant range. With the exception of
(Moore, 2002) and (Bortoff, 2000), none of the
above references account for the coupling between
the RCS and dynamics through the aspect and
bank angles. Moreover, only (Misovec et al., 2003)
accounts for the probabilistic nature of aircraft
detection by a radar.

The current paper contributes to the literature
an integrated model with the following original
features:

• The aircraft RCS depends on both the aspect
and bank angles. Moreover, the turn rate of
the aircraft is determined by its bank angle.
Hence, the RCS and aircraft dynamics are
coupled through the aspect and bank angles.

• The probabilistic nature of radar tracking
is accounted for. Specifically, an estimate of
the probability of tracking is derived as an
explicit function of the aircraft RCS and
range.

• The decision process for launching a SAM is
also modeled. Specifically, the probability of
missile launch is the probability of tracking,
averaged over a time interval of length Tresp.
Here, Tresp represents the response time of
the radar.

• The requirement to maintain tracking during
missile flyout is also included. Specifically,
once a SAM is launched, the probability of
being downed is the probability of tracking,
averaged over the flyout time.

Based on this integrated model, the problem of
UCAV path planning is formulated as a minimax
optimal control problem, with moving average
functional, where the aircraft lateral acceleration
serves as control. The current paper treats this
optimization problem and provides the following
original contributions.

• Necessary conditions of optimality for the
minimax optimal control problem with mov-
ing average functional are formulated.

• Properties of the optimal paths are derived,
based on the above necessary conditions.

• An efficient numerical optimization proce-
dure is proposed that utilizes the above prop-
erties of optimal paths.

Numerous results obtained from this research
have been omitted from this paper, and can be
found in (Kabamba et al., 2004).

2. MODELING

2.1 Aircraft Model

The bank-to-turn aircraft is assumed to move in a
horizontal plane at a constant altitude z according
to the equations

ẋ = v cos ψ,

ẏ = v sin ψ,

ψ̇ =
u

v
,

|u| < U,

(1)

where x and y are the Cartesian coordinates of the
aircraft, ψ is the heading angle, v is the speed, u
is the input signal and is the acceleration normal
to the flight path vector, while U represents the
maximum allowable lateral acceleration.

Let
θ = arctan(y/x),
α = θ − ψ + π,

φ = arctan
z

√

x2 + y2
,

(2)

be the azimuth, aspect, and elevation angles,
respectively, and let the bank angle µ be given
by

µ = arctan(u/g), (3)

where g is the acceleration of gravity.

The aircraft RCS is modeled as a function of the
aspect angle α, the elevation angle φ, and the bank
angle µ, so that

RCS = σ(α, φ, µ). (4)

2.2 Radar Model

The radar model will be presented in terms of its
inputs (aircraft range and RCS) and output (an
estimate of the probability that an aircraft can be
tracked for an interval of time).

For the sake of simplicity, assume that the radar is
located at the origin of the Cartesian coordinate
system (x, y, z). Let R =

√

x2 + y2 + z2 be the
slant range from the radar to the aircraft (i.e.,
the aircraft range).

Let Pt(τ) be the instantaneous probability that
the radar tracks the aircraft at time τ . This
probability is given by

Pt =
1

1 + c∗1 exp(
c∗
2
σ

R4 )
, (5)

where c∗1 and c∗2 depend on the radar, and σ is
defined in (4) (see (Kabamba et al., 2004) for
details). Based on (5), the probability that the
radar tracks the aircraft over an interval [t−∆T, t]
is

1

∆T

∫ t

t−∆T

Pt(τ)dτ . (6)



2.3 Missile Launch Model

Prior to missile launch, the radar must contin-
uously track the aircraft during some response
time Tresp. To model this phenomenon, equate the
probability of missile launch with the probability
that the aircraft has been tracked over the interval
Tresp. Thus, by (6), the probability of missile
launch at time t is

1

Tresp

∫ t

t−Tresp

Pt(τ)dτ . (7)

2.4 Missile Lethality Model

Accurate missile guidance requires that the radar
system maintain track on the aircraft during the
time of flight of the missile (Ben-Asher and Yaesh,
1998). Let R0 be the aircraft range at the time
the missile is fired and vm be the average missile
speed. Assuming that the aircraft range does not
change significantly while the missile is in flight,
the missile flyout time is given by

Tfo =
R0

vm

. (8)

The probability that the aircraft is shot down at
time t, given that the missile was fired, is

1

Tfo

∫ t

t−Tfo

Pt(τ)dτ . (9)

3. PROBLEM FORMULATION

3.1 Mission Description

The missions considered in this paper are to fly
from a given initial location to a given destination,
in a given mission time, TM , while avoiding being
downed by radar-guided SAMs. Our formulation
allows the specification of a sequence of waypoints
that the UCAV must fly over. The heading angles
of the UCAV at the waypoints and the flight times
between consecutive waypoints may be free or
given. Hence, the mission is specified by initial
and final conditions, mission time, waypoints, and
flight times between waypoints.

3.2 Dynamic Optimization Problem

Define the threat window as T , Tresp + Tfo.
Combining (7) and (9) yields the probability of
the aircraft being shot down at time t as

1

T

∫ t

t−T

Pt(τ)dτ . (10)

This means that the probability of the aircraft
being shot down is equivalent to the probability

that the aircraft is tracked during a window of

time whose length equals the sum of response time

and missile flyout time.

Based on the model introduced in Section 2,
the following dynamic optimization problem is
formulated: minimize the maximum value of (10)
subject to the aircraft dynamics and boundary
conditions. In other words,

min
u

max
t∈[0,TM ]

1

T

∫ t

t−T

Pt(τ)dτ , (11)

subject to : • (1) − (5),

• boundary conditions, including

− initial conditions,

− final conditions,

− waypoints.

4. OPTIMAL CONTROL

The necessary conditions of optimality for a gen-
eral minimax optimization problem with moving
average are derived in (Kabamba et al., 2004).
Here, these necessary conditions are applied to
the problem (11). To accomplish this, augment
(1) with

ξ̇(t) =
Pt(t) − Pt(t − T )

T
. (12)

Then (11) becomes

min
u

max
t∈[0,TM ]

ξ(t), (13)

subject to : • (1) − (5), (12)

• boundary conditions, including

− initial conditions,

− final conditions,

− waypoints.

The resulting system is the same as that of (1),
with the addition of a state described by the time-
delay differential equation (12). The Hamiltonian
for this problem is

H = px(t)v cos ψ(t) + py(t)v sinψ(t)

+ pψ(t)
u(t)

v
+ pξ [Pt(t) − Pt(t − T )] , (14)

where px, py, pψ, and pξ are the costates.

Consider the case that the maximum of (11)
occurs at a finite number of isolated points
t1, t2, . . . , tk. For this case, the necessary condi-
tions of optimality define two separate optimiza-
tion problems. Each will be addressed in turn.

4.1 Optimization Problem 1

Let ti be a time at which ξ(t) achieves a maximum.
Consider now the optimization problem during



the interval [ti − T, ti], which will be referred to
as Optimization Problem 1. For this problem, the
costate equations become

ṗx = µi

∂Pt(t)

∂x
,

ṗy = µi

∂Pt(t)

∂y
,

ṗψ = px(t)v sin ψ(t) − py(t)v cos ψ(t)

+ µi

∂Pt(t)

∂ψ
,

ṗξ = 0,

(15)

and, if ∂Pt/∂u 6= 0, the necessary conditions of
optimality give the optimal control as a solution
to

pψ

v
− µi

∂Pt

∂u
= 0, (16)

where µi > 0 and
∑k

i=1 µi = 1.

When ∂Pt/∂u = 0, the necessary conditions yield
the optimal control as

u = U sign(pψ). (17)

In addition, a singular solution is possible when
pψ = 0 and ṗψ = 0. Thus, when ∂Pt/∂u = 0, the
optimum control is either “bang-bang,” as given
by (17), or “bang-singular-bang” when a singular
condition holds (Bryson and Ho, 1975).

4.2 Optimization Problem 2

Let [tj , t
′
j ] be an interval that is disjoint from

any interval [ti − T, ti] described in Optimization
Problem 1. The optimization problem during any
such interval [tj , t

′
j ] will be referred to as Op-

timization Problem 2. During this interval, the
costate equations are

ṗx = 0,

ṗy = 0,

ṗψ = px(t)v sin ψ(t) − py(t)v cos ψ(t),

ṗξ = 0.

(18)

The optimal control is either bang-bang as in (17)
or singular if pψ = 0 and ṗψ = 0. But ṗψ = 0 is
just equivalent to

tan ψ =
py

px

. (19)

Thus, during any interval [tj , t
′
j ] described in

this optimization problem, the optimal control is
always “bang-bang” or “bang-singular-bang.”

5. PROPERTIES OF OPTIMAL PATHS

The exact solution of (11) requires that the times
ti when the isolated maxima occur, as well as the
boundary conditions at the beginning and end of
each interval [ti − T, ti], be selected optimally.

Unfortunately, the necessary conditions do not
indicate how these times or boundary conditions
are to be chosen. Thus, the necessary conditions
of optimality do not define a unique candidate
for the solution of (11). Additionally, an exact
solution requires knowledge of the aircraft RCS,
since Pt depends on this function. In spite of
these limitations, it is possible to characterize the
qualitative properties of optimal controls for the
two optimization problems, and use these proper-
ties to develop an efficient numerical optimization
method.

5.1 Properties for Optimization Problem 1

When Optimization Problem 1 applies, consider
the following assumptions, which simplify the
problem enough to determine the qualitative na-
ture of the trajectory.

Assumption 1: ∂Pt/∂u = 0 from the nose or tail
aspect.

Assumption 2: From any aspect angle other than
the nose or tail, the aircraft RCS increases mono-
tonically as the magnitude of bank angle in-
creases. Additionally, ∂σ/∂µ = 0 at µ = 0.

Assumption 3: Pt is a saturation function of RCS.
(see Figure 1 where the saturation function and
the exact expression (5) are shown). The effect of
this approximation is to set ∂Pt/∂σ ≡ 0, hence
∂Pt/∂u ≡ 0, for all but a small range of values of
σ.
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Fig. 1. Pt versus RCS

Under these conditions, the optimum control nec-
essarily has the following properties:

Property 1: If pψ 6= 0 when flying directly to-
wards or away from a radar, then a turn must
be initiated using maximum bank. Indeed, since
∂Pt/∂u = 0, and pψ 6= 0, the control is “bang-
bang” by (17).

Property 2: If pψ 6= 0 and Pt = 1 when flying
straight, then a turn must be initiated using
maximum bank. Indeed, the fact that Pt = 1



during straight flight indicates ∂Pt/∂u = 0 for
all µ. Since pψ 6= 0, the control is “bang-bang” by
(17).

Property 3: When pψ = 0, no turn is required.
Indeed, if pψ = 0 then ∂Pt/∂u = 0 by (16).
Two conditions that satisfy this requirement are
when µ = 0 or when Pt, as a function of RCS,
is saturated. In either case, µ = 0 satisfies the
necessary conditions.

5.2 Properties for Optimization Problem 2

When Optimization Problem 2 applies, the con-
trol is either “bang-bang” or “bang-singular-
bang.” Because, in this case, the cost functional
is independent of the control input, there is
no unique solution. Therefore, this problem is
treated as a minimum time problem, which has
the same necessary conditions, and results in the
minimum path length. Waypoints are treated as
interior-point state constraints that necessitate
jump discontinuities in px, py, and pψ (Bryson
and Ho, 1975).

6. NUMERICAL PROCEDURE

The properties of optimal paths outlined in Sec-
tion 5 suggest that a reasonable suboptimal tra-
jectory might be achieved by using only zero bank
or maximum bank. As a result, the proposed
numerical method for solving the dynamic opti-
mization problem (11) is as follows. An initial
path is determined by requiring overflight of a
sequence of movable control points and fixed way-
points. Overflight of control points is followed by
a maximum bank turn to roll out on a heading
towards the next point. Turns at waypoints are
not required. The coordinates of the control points
serve as inputs to a finite-dimensional, nonlinear
programming problem, which is solved numeri-
cally using the Matlab Optimization Toolbox.
Fixed arrival times at designated waypoints are
treated as equality constraints. The requirement
to complete the mission within the interval [0, Tm]
is met by establishing an inequality constraint on
the time at the last waypoint.

7. EXAMPLE

7.1 RCS Model

A simplified example of an RCS model for an
aircraft is that of an ellipsoid. Although this model
does not represent the RCS of a particular air-
craft, it captures three important characteristics:
a) relatively small frontal RCS, b) larger beam
aspect RCS, and c) relatively large RCS when

viewed from above or below. Additionally, this
RCS model satisfies Assumptions 1 and 2 of Sec-
tion 5. Note that the numerical procedure of this
section also applies to RCS models that may bet-
ter approximate the actual aircraft RCS.

Following (Mahafza, 2000), the RCS of an ellip-
soid is given by

σ(α,φ,µ)=

πa2b2c2

(a2 sin2 αe cos2 µe+b2 sin2 αe sin2 µe+c2 cos2 αe)2
,

(20)

αe = arccos (cos(φ) cos(α)) , (21)

µe = µ − arctan

(

tan(φ)

sin(α)

)

, (22)

where the parameters a, b, and c represent the
principal axes of the ellipsoid.

7.2 UCAV and Radar Parameters

The aircraft model assumes that the UCAV has
a speed of v = 252 m/sec (0.8 M) and its
RCS, depicted in Figure 2, is characterized by
the parameters (a, b, c) = (0.3172, 0.1784, 1.003).
The maximum bank angle is U = 78.5◦ and
corresponds to a 5g level turn. The radar model
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Fig. 2. Dependence of UCAV RCS on Aspect and
Bank Angles

assumes that Tresp = 30 sec, and the missile
flyout time is fixed at Tfo = 30 sec. Hence, the
threat window of the radar-missile subsystems is
1 min. The aircraft altitude is z = 15.1 km and
the mission time, TM , is 750 sec.

7.3 Mission Specifications

This mission is specified in terms of the radar po-
sition, initial UCAV position and velocity vector,
waypoints, destination, and the arrival time at
each waypoint. Distances are in kilometers, time
is in seconds, and speed is in m/sec. Specifically:
• Radar position=(0,0).
• Initial position A=(-100, -12), t = 0.
• Initial velocity (vx, vy) = (252, 0).
• Waypoint B=(-74.1, 0), t = 135.0.
• Waypoint C=(-51.9, 52.3), t = 522.0.
• Destination D=(-31.3, 96.9), t = 750.0.



7.4 Optimal path

Using these mission specifications and the opti-
mization approach outlined in Section 6, the op-
timal path is computed and depicted in Figure 3.
In this figure the following conventions are used:
• Initial position, waypoints, and destination are
depicted as alphabetically labeled large circles
while control points are depicted as small circles.
• Radar position is shown by a diamond.
• The range at which Pt = 0.5 for a target with
σ = 1m2 is shown by a dashed arc of circle.
• The UCAV ground track is a solid line.
• The instantaneous Pt is indicated by the dark-
ness of a line-of-sight from the radar towards the
aircraft as shown in the legend of Figure 3.
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Fig. 3. Optimal Path Based on Model (1)-(10)

On the optimal path, the maximum values of
(10) is 0.159. This is especially noteworthy since
the entire flight path is well within the range at
which a target with RCS σ = 1m2 is likely to
be tracked (i.e., Pt > 0.5). This optimal path
corroborates the tactical recommendation given
to fighter pilots facing SAM threats: “deny range,
aspect, and aim” (Shaw, 1985). Indeed, consider
the BC leg; range is denied by flying as far from
the radar as the time constraint allows; aspect
is denied by avoiding, as much as possible, to
show the larger RCS beam aspect; and aim is de-
nied by making the periods of time, during which
the UCAV is continuously tracked, short. More
importantly, this path exhibits a characteristic
property of optimal paths for aircraft with non-
uniform RCS under threat: The optimal trajectory

exploits “weaving” maneuvers to avoid long con-

tinuous exposure of aspects with large RCS. This
property is observed in all scenarios considered
to-date (Kabamba et al., 2004).

8. CONCLUSIONS

In this paper, the problem of optimal path plan-
ning for UCAVs in the presence of radar-guided

missile threats is treated. A new, integrated model
is introduced that accounts for the interaction
between the aircraft, the radar, and the missile.

Within the framework of this model, the problem
of UCAV path planning is formulated as a min-
imax optimal control problem, with the aircraft
lateral acceleration serving as control. Numerical
results on UCAV path planning appear to confirm
standard flying tactics of “denying range, aspect,
and aim,” by yielding flight paths that “weave” to
avoid long exposures of aspects with large RCS.
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