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Abstract: Computational techniques may be useful in modelling and forecasting 
spatiotemporal data. Statistical challenges that emanate from specification error, 
aggregation error, measurement error, and perhaps model complexity among other 
problems encourage employing computational techniques. Genetic programming and 
neural networks are two such techniques that are robust with respect to autocorrelation, 
multicollinearity, and stationarity problems statistical and econometric methods 
encounter. These two computational techniques are employed to demonstrate their 
potential in producing dynamic forecasts of spatial data. Such forecasts can then help 
produce sequences of maps of the same geographic region depicting future temporal 
changes.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Techniques to analyse, model, and forecast 
spatiotemporal series are far from being established. 
Over the past few decades, spatial statistics advanced 
far more than spatial econometrics and spatial 
forecasting. Spatial statistics offer measures of global 
spatial autocorrelation like the Moran I and Geary’s c 
and of local spatial autocorrelation like G and G* 
(Getis and Ord, 1992). Geographic Information 
Systems (GIS) provides a mean for collecting, 
storing, and analysing data associated with 
geographic regions. However, temporal forecasting of 
spatial data remains a problem unresolved. 
Traditional econometric techniques (such as 
regression or maximum likelihood methods) are of 
little help because analysis of spatial data quickly 
faces a problem of spatial autocorrelation. Model 
misspecification and spatial heterogeneity are other 
problems that hinder progress. These are aggravated 
by other statistical complications such as 
measurement error, non-stationary data, and 
aggregation problems. Anselin et al. (1996) discuss 
spatial autocorrelation and other statistical 
complications encountered when analysing or 

modelling spatial data. When spatial data is taken 
over time, perhaps the presence of low dimensional 
nonlinear or chaotic dynamics complicates the matter 
further. This issue was addressed by and by Maros-
Nikolaus and Martin-González (2002). Nonlinear 
dynamics are more difficult to model, and forecast 
errors or residuals tend to increase rapidly over time 
due to sensitivity to initial conditions.  
 
Given that statistical problems hinder modelling and 
forecasting efforts when dealing with spatiotemporal 
data, using modelling techniques that circumvent 
statistical estimation of model parameters may be 
helpful. Two computational techniques – genetic 
programming and artificial neural networks – emerge 
as reasonable alternatives. Genetic programming (GP) 
produces model specifications that may be capable of 
forecasting spatiotemporal series. GP is a stochastic 
search optimisation technique based on the Darwinian 
survival of the fittest notion. It was popularised by 
John Koza (1992). One of its useful applications is its 
ability to deliver regression-type models. Traditional 
statistical calculations to estimate model coefficients 
and restrictions formal statistical models impose are 
totally absent. When properly coded, GP can 



assemble large numbers of equations in search for the 
fittest one. Each equation is assembled by randomly 
combing variables, random numbers, and operators. 
The computer algorithm then identifies that fittest 
equation. Models GP produces are typically nonlinear 
and univariate, very difficult to interpret, but forecast 
rather well. A brief review of the technique is in the 
next Section of this paper. Neural networks (NN) are 
a computerized classification technique that also 
delivers forecasts but without delivering a model. NN 
architecture is based on the human neural system. It is 
programmed to go into a training iterative process 
designed to learn the dynamics of a system. NN is a 
more acceptable and established technique with 
superior power in fitting complex dynamic data and 
has gained attention. Gopal and Fischer (1996) and 
Cubiles-de-la-Vega1 et al. (2003) used NN in spatial 
forecasting. Both GP and NN are robust with respect 
to many statistical problems standard econometric or 
statistical modelling methods have. More specifically 
they are robust against problems of multicollinearity, 
autocorrelation, non-stationarity, and specification 
errors. Use of these two techniques is warranted since 
they forecast well. They are applied below to discrete 
time series of multiple geographical regions collected 
over a number of years.  
 

     

)

To produce forecasts of a variable Y using 
explanatory or independent variables, both dependent 
and independent variables’ values must be defined 
and obtained. Variables’ associated with space or 
geographic regions will be identified by i, where i = 
1, …, n. Values collected at equally spaced time 
intervals will be identified by t, where t = 1, …, T. 
The objective here is to find that model for the spatial 
univariate time series Yit, where Yit is a Kx1 vector 
with K = n*T. GP is expected to deliver a single 
equation model that captures variations across 
geographic regions over time. The following is a 
general hypothetical specification of such model: 

=it t,i i,t itY f(S ,X ,Z   (1) 

where is a set of spatial variables that vary across 

regions but not over time, is a set of time series 

variables that vary over time but remain constant 
across regions, and  are variables that vary over 

both. NN is expected to accurately reproduce spatial 
values of Y over the training period then forecast 
their values for a few periods into the future. 
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Delivering spatiotemporal forecasts is important. It 
helps produce dynamic geographic maps with future 
changes captured in successive images for decision 
making purposes. The manner in which GP and NN is 
used here was never attempted before. GP and NN 
modelling using the exact same data set and 
forecasting the same number of periods ahead provide 
limited comparison to reach preliminary conclusions 
about the appropriateness of these techniques and 
their abilities. However, it is important to demonstrate 
their potential their comparison is thus reasonable and 
should help evaluate their relative performances.  
 

This paper introduces a different way to forecast 
spatiotemporal phenomena. What is presented here is 
of exploratory nature. While real data is used for 
demonstration below, model specification variables 
included are far short of pertinent ones. Using a 
complete set of possible variables was not feasible at 
the time this research was conducted. Only data 
available freely via the web was employed. In spite 
of such limitation, results reported below seem 
promising. This demonstration starts in the next 
Section with a brief explanation of GP and a review 
of NN how they can be used in forecasting. 
Hypothetical specification of the univariate model 
and the data used to obtain a GP best fit equation and 
NN structures used are described in Section 3. 
Forecast results using GP and NN are compared in 
Section 4. The final Section contains the conclusion. 
 

 
2. GP and NN 

 
2.1  Genetic Programming: 
 
Avoid leaving a heading at the bottom of a column, 
with the subsequent text starting at the top of the next 
page/column.  Use extra spacings (between earlier 
figures or sections) to push the heading up to the top 
of the same column as its text.  In view of the tight 
page constraints, however, do please make the fullest 
possible use of the text area. 
GP is utilized here to evolve model specifications 
useful in forecasting. A description of how GP is 
used in forecasting and its statistical properties are in 
Kaboudan (2001). TSGP (for Time Series Genetic 
Programming, Kaboudan, 2003) is the software used 
to evolve models with. TSGP is written for Windows 
environment in C++. It uses two types of input: data 
input files and a configuration file. Data values of the 
dependent and each of the independent variables 
must be supplied in separate files. The configuration 
file contains execution information such as: name of 
the dependent variable, number of observations to fit, 
number of observations to forecast, number of 
equation specifications to evolve, and other GP-
specific parameters.  To obtain a best-fit equation, 
the GP computer program starts by randomly 
assembling an initial population of equations. The 
user determines the size of such population. The user 
provides data input files of the variables and selects 
from a set of mathematical operators such as +, -, *, 
protected /, protected , sin, cos, as well as others 
the program uses to assemble equations with. 
Protected division and square root are necessary to 
prevent division by zero and taking the square root of 
a negative number. These protections follow 
standards most GP researchers agree upon and are 
designed to avoid computational-problems. More 
specifically, these protections are programmed as 
follows: 

1. If in (x÷y), y = 0, then (x÷y) = 1. 
2. If in y1/2, y < 0, then y1/2 = -| y|1/2. 
3. If in ln(y), y ≤ 0, then ln(y) = 1, where ln is the 

natural logarithm. 
4. If in exp(y), y > 10, then exp(y) = exp(10). 



Using a random number generator, the program 
randomly selects variables and operators to assemble 
equations members of a population. Once assembled, 
their respective fitness (typically MSE) is computed, 
where  

= −∑ 2
i iMSE (Actual Fitted ) /n     (2) 

and where n is the sample used to obtain fitted 
values. That equation in a population with the lowest 
MSE is considered fittest. If a population contains an 
equation that replicates the values of the dependent 
variable accurately is found the program terminates. 
Level of accuracy is user-controlled threshold 
minimum MSE (e.g. Min (MSE) = 0.0001). If GP 
does not deliver an equation with the Min (MSE), 
which is most of the time, the program proceeds to 
breed a new population. Succeeding populations are 
the outcome of a programmed breeding mechanism. 
Self-reproduction, crossover, and mutation are used 
to breed new members. In self-reproduction, the best 
equations in an existing population are simply copied 
into the new one. In crossover, randomly selected 
sections from two (usually fitter) equations from an 
existing population are exchanged to breed two 
offspring. In mutation, a randomly selected section 
from a randomly selected equation from an existing 
population is replaced by newly assembled part(s) to 
breed an individual member of the new population. 
Thusly, GP continues to breed new generations until 
an equation that satisfies Min (MSE) set is found or a 
preset maximum number of generations is reached. 
The best equation in the last population bred is then 
used to produce fitted as well as forecast values. 
Parameters to evolve GP models are typically set to 
the following: Population size = 1000, number of 
generations = 100, self-reproduction rate = 20%, 
crossover rate = 20%, mutation rate = 60%, and 
number of best-fit equations to evolve in a single run 
= 100. Evolving 100 equations is necessary because 
executing the program only once is not sufficient. 
Assembling equations in GP is random and the fittest 
equation is one that has global minimum MSE. 
Unfortunately, GP software typically gets easily 
trapped at a local minimum rather than global MSE.  
 
TSGP produces two types of output files. One has a 
final model specification and the other contains 
actual and that model’s fitted values as well as 
performance statistics such as R2, MSE, and mean 
absolute percent error or MAPE, where  

(= −∑ i i
1MAPE 100* | (Actual Fitted ) /Actual |
n )i .   (3) 

     

GP delivers equations that may reproduce history 
fairly well. However, even if it succeeds, it does not 
necessarily forecast well. This problem is not unique 
to GP. NN suffers from the same type of problem. A 
best-fit model fails to forecast well when the 
algorithm used delivers outcomes that are too fit. 
This phenomenon is known as overfitting. (For more 
on overfitting, see Lo and MacKinlay, 1999.) To 
obtain a best forecasting equation, it seems only 
logical then that an ex post forecast by each equation 
be evaluated first. An ex post forecast is one whose 
dependent variable’s outcome is already known but 
the information was not used in obtaining the model. 
If the dependent variable’s outcome is unknown, the 

forecast is ex ante. It is natural to have more 
confidence in the ex ante forecast if the model 
producing it also produced an acceptable ex post 
forecast. However, if that model failed to reproduce 
history, most probably it will not successfully deliver 
a reliable forecast either. The best forecasting model 
is therefore identified in two steps. First, fittest 
equations are sorted according to lowest historical 
MSE. Those equations with the lowest 10 MSE 
(where 10 is arbitrarily set) are then sorted according 
to ex post forecast MAPE. That equation among the 
selected 10 with the lowest forecast MAPE is 
selected as best to use for ex ante forecasting.  
 
2.2  Neural Networks 
 
Neural networks architecture (NN) is used to produce 
forecasts that will be compared with those obtained 
using GP. Input data are presented to the network 
that learns to predict future outcomes. Principe et al. 
(2000) among many others provide a complete 
description on how NN can be used in forecasting. 
There are several network structures to select from 
when constructing a neural network to use in 
forecasting. Multilayer perceptrons (MLP) are 
layered feedforward networks. They are typically 
trained with static backpropagation. Although they 
train slowly and require large samples to train with, 
they are easy to use and approximate well. 
Generalized feedforward networks (GFF) are a 
generalization of MLP with connections that jump 
over one or more layers. They are also trained with 
static backpropagation. GFF are more efficient in 
solving problems. MLP and GFF were used to obtain 
that comparative forecast of the same spatiotemporal 
data GP produces a model for.  
 
 

3. MODELING HOME PRICES 
 

3.1  Input Data: 
 
Applying GP or NN to forecast spatiotemporal 
phenomena demands data accessible mostly using 
GIS. Obtaining such data was not possible and a 
suitable set of data was obtained using Internet search 
instead. Annual median housing prices by 
neighbourhood published by the City of Cambridge, 
MA, Community Development Department 
Community Planning Division (2003) were obtained. 
The data set is of annual median price of single 
family homes for the period 1993-2002 of twelve 
neighbourhoods. Table 1 has a list of the explanatory 
variables used to obtain models and forecast Pit = 
Real median price of homes sold in neighbourhood i 
at time period t. Dependent and independent variables 
used in GP and NN are defined as follows: 
DVt,i =  Twelve dummy variable that take the value of 

1 for neighbourhood i and zero otherwise. These 
are constant for all years.  

PCYit-2  = Real per capita income in neighbourhood i 
at time period t-2. PCY varies by neighbourhood as 
well as over time.  

Pit-2       = Real median price lagged two periods. 



Yi,t-2    = Real household median income for the city 
of Cambridge, MA. This variable is held constant 
across neighbourhoods but varies with time.  

MRi,t-2 = Mortgage rate lagged two years. The 
variable is also held constant across 
neighbourhoods and varies with time. Mortgage 
rates were obtained from FRB St. Louis. 

Yeari,t = 1993, 1994, …, 2002. This variable is held 
constant across neighbourhoods but varies with 
time. 

Average Pi,t-2 = Real average median price of homes 
in the city of Cambridge, MA, lagged two years. 
This variable is held constant across 
neighbourhoods but varies with time. 

 
Table 1. Explanatory variables used in modelling.

     

 
Spatial Variables 

 
Temporal 
Variables 
(Lag = 2) 

 
Spatiotemporal 

Variables 
(Lag = 2) 

DDVV11,,  DDVV22,,  DDVV33,,  
DDVV44,,  DDVV55,,  DDVV66,,  
DDVV77,,  DDVV88,,  DDVV99,,  

DDVV1100,,  DDVV1111,,  
DDVV1122 

YY,,  
MMRR,,    
YYeeaarr,,    
AAPP  

  

PPCCYY,,    
PP  
 

 
In Table 1, the twelve dummy variables are the only 
strictly spatial variables used. Including all twelve 
basically help discriminate between neighbourhoods. 
Given that multicollinearity is not a problem when 
using GP or NN, all twelve are used. Their use 
demonstrates robustness of GP and NN against 
multicollinearity. Per capita income was not available 
by neighbourhood but by census tract.  
 
Spatial autocorrelation was tested using the following 
OLS regression model:  

−= α + ρit (i 1)tP P   (4) 

where ρ measures the degree of autocorrelation. This 
equation measures autocorrelation between pairs of of 
contiguous neighbors over time. Autocorrelation is 
present if the estimated ρ is not significantly different 
from zero. The resulting equation using data 1995-
2002 is: 

−= +it (i 1)tP 138.9 0.452 P    (5) 

where the p-value = 0.000 for both the intercept and 
estimate of ρ. Equation (5) confirms the absence of 
spatial autocorrelation between pairs of contiguous 
neighbourhoods averaged over time. All temporal 
data were lagged two years which were reserved to 
use as input to forecast unknown outcomes of 2003 
and 2004. The reason for using this lag is to obtain 
predictions of Pit without having to forecast any 
independent variable. The number of data points 
available for obtaining a model using GP and for 
training using NN was 69 after losing three 
observations. They belong to twelve neighbourhoods 
and represent six years over the period 1995-2000.  
 
3.2  Best-Fit Models: 
 
TSGP was executed to find 100 best-fit equations in 
100 searches. The best-fit among fittest equations is: 

− − −

− − −

= + + +
+ − + −

it it 2 it 2 t 2,i it 2

5,t t 2,i i,t 2 t 2,i 11,t

P P 3 cos (P ) 8 cos (MR P
DV MR Y (Y / DV )

− )   (6)  

This nonlinear equation shows that prices are 
determined here according to prior prices, mortgage 
rate, and real household median income. Only 
neighbourhoods 5 and 11 seem to have an effect on 
differences in prices.  
 
The two network structures (MLP and GFF) were 
tested with different configurations. For each network 
structure hidden layers are varied. Hidden layers 
tested were set to one, two, and three. Two transfer 
functions were tested under each scenario, tanhAxon 
and sigmoidAxon. Given these options, the total 
number of networks to test thus far is twelve. Each 
was trained using learning rules with momentum set 
at 0.7 once then set at 0.9 another. The 24 
configurations were tested with a maximum of 1000 
epochs. After the best NN structure was identified, 
the number of epochs was then varied. Maximum 
epochs were tested at 5000 and 10000 in addition. 
Variation and control of training epochs help identify 
networks that succeed in depicting dynamics of 
training data as well as forecast well. The final model 
selected had the following structure and run 
parameters:  GFF with two hidden layers; the transfer 
function was sigmoidAxon with learning momentum 
set = 0.90; the maximum number of epochs was at 
2000. Number of epochs = 2000 was identified as 
best after determining the best configuration then 
comparing its results at epochs = 500, 1000, 2000, 
3000, 4000, and 5000.  
 

Table 2. Statistics on GP and NN fitted values 
 

 GP NN 

R2 0.84 0.93 
MSE 1949.966 882.30 
MAPE 20% 12.3% 
Residuals:   
    Mean  -0.73 -1.26 
    Standard Error of  5.35 3.60 
    Median -4.03 -3.15 
    Kurtosis -0.44 0.02 
    Skewness 0.28 0.35 
    Minimum -89.72 -57.04 
    Maximum 109.28 83.97 

 
The best NN configuration produced a better fit of Pit 
training values than the selected GP model. Table 2 
contains comparative statistics on fitted values GP 
and NN delivered. As the table suggests, the GP 
equation explained 84% of the variation in prices (R2 
= 0.84) while NN explained 93% of the variation (R2 
= 0.93). Neither series of residuals is normally 
distributed. (A data set is approximately normally 
distributed if its mean is equal to its median and if 
the coefficients of skewness and kurtosis are 
approximately equal to zero.) One would tend to 
believe at this point that NN will produce the better 



out-of-sample (2001 and 2002) forecasts. This is not 
the case as demonstrated next. 
 
 

4. FORECASTING 
 
Although NN delivered a better fit in reproducing 
data used in training (1995-2000), forecasts by the 
GP model were better than those by NN. Table 3 
contains a comparison of the forecast statistics. 
  

Table 3. Forecast comparison 
 

  GP NN 
Theil's U  0.08 0.097 
MAPE 9.80 19.940 
MSE  2623.27 4272.921 
NMSE  0.14 0.224 

 
The Theil’s U-statistic reported in the table is a 
measure of forecast performance. It is known as 
Theil’s inequality coefficient and is defined as: 

·
− −

= =

=

+∑ ∑
2k k

1 1
ikj 1 j 1

2
ik

MSEU

k P k P

 (7) 

where j = 1, 2, …, k (with k = 23 observations 
representing 2001 and 2002 forecasted),  and are 

forecast values of . This statistic will always fall 
between zero and one where zero indicates a perfect 
fit (Pindyck and Rubinfeld, 1998, p. 387). Figure1 
and provide a comparison suggesting the better 
performance of GP’s forecast. The shorter series are 
actual values while the longer ones are the forecasts. 

$
ikP

ikP

 

Figure 1. Actaul and GP foreast prices.
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Figure 2. Actual and NN forecast of prices
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5. CONCLUSION 
 
This paper contained an experimental exercise 
suggesting that combining spatial and temporal data 
to obtain forecast using computational techniques is 
feasible. Data on single family home prices were 
used to test whether employing genetic programming 

and neural networks would help deliver forecasts of 
the spatiotemporal phenomena. Explanatory 
variables used contained perfect collinearity, spatial 
autocorrelation, and measurement error. Because 
both GP and NN have robustness against many 
statistical problems, it was possible to obtain 
forecasts of prices across geographical 
neighbourhoods and over time. NN fitted price 
values were better than GP’s. The better out-of-
sample ex post forecast was delivered by GP. GP’s 
better forecast suggests that it’s ex ante forecast may 
be more reliable as well.   
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