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Abstract: The paper proposes a novel approach to identification of continuous-
time systems from sampled I/O data. The coefficients of plant transfer functions
are directly identified by applying an iterative learning control which enables us
to achieve perfect tracking for uncertain plants by iteration of trials. Furthermore,
one way to make the method robust against the measurement noises is shown. One
of the merits of the proposed method is that it does not require time-derivative
of I/O signals. In addition, it indicates us the estimation accuracy explicitly
through tracking control experiments. Numerical examples are given to illustrate
the effectiveness of the proposed method. Copyright c©2005 IFAC
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1. INTRODUCTION

The identification of continuous-time systems is
important in a wide variety of problems. There
are two ways to obtain a continuous-time model.
An indirect way, suggested by the discrete-time
model identification methodology, is to estimate
a discrete-time model first and then convert it
into a continuous-time model. A direct approach,
suggested by the continuous-time model identi-
fication methodology, consists in identifying di-
rectly a continuous-time model from the sam-
pled data. The basic difficulty of the direct ap-
proach is in handling of the non-measurable time-
derivatives. Many methods to circumvent the need
to reconstruct these time-derivatives have been
devised. A comprehensive survey of these tech-

niques has been first given by (Young, 1981) and
then by (Unbehauen and Rao, 1990). A book
has also been devoted to these so-called direct
methods (Sinha and Rao, 1991). The Continuous-
Time System Identification (CONTSID) toolbox
has been developed on the basis of these meth-
ods (Garnier and Mensler, 1999; Garnier and
Mensler, 2000; Garnier et al., 2003).

On the other hand, in the iterative learning con-
trol for obtaining the input, which yields prede-
termined output by the iteration of trial, such
a method as to employ time-derivative of er-
rors is proposed(Arimoto et al., 1984; Sugie and
Ono, 1991). Those are not suitable under the
condition when time-derivative of a high order
has to be utilized, and Hamamoto et al. propose



an iterative learning control within prescribed
input-output subspace, showing that even when
precise information of the model is not avail-
able, time-derivative of tracking error is not re-
quired to achieve perfect tracking(Hamamoto and
Sugie, 2001). Further, Sugie et al. pointed out the
possibility of the identification of the continuous-
time system through the iterative learning control
within the prescribed input-output subspace(Sugie
and Hamamoto, 2002).

In this paper, while paying attention to the iter-
ative learning algorithm within prescribed input-
output subspace, the continuous-time identifica-
tion method is proposed from an entirely different
viewpoint from the conventional one. Firstly, by
using the iterative learning algorithm, it is shown
that from the sampled I/O data, parameters of
the continuous-time system can be identified with-
out the use of time-derivative, and from numeri-
cal examples, its validity is illustrated. Then, a
learning update law is proposed, which becomes
robust against measurement noise. Furthermore,
since parameters are identified while performing
a follow-up control to the target trajectory, it
is demonstrated that the proposed method pos-
sesses advantages, which conventional identifica-
tion method does not have, such as users can
confirm the identification accuracy by watching
the tracking error quantity.

In this paper, the superscript of the variables
denotes the trial number of the experiment and
the subscript of those denotes the element number
of a set or a matrix. Namely the input u of the kth
trial is denoted by uk and the ith element of the
vector x is denoted by xi. And u0 is the initial
input in the learning iteration.

2. THE IDENTIFICATION ALGORITHM

2.1 Iterative learning algorithm within prescribed
I/O subspace

We consider a continuous-time SISO system
whose input u(t) and output y(t) are related by a
linear constant coefficient differential equation of
order nf

nf
∑

i=0

αi

diy(t)

dti
= u(t). (1)

In this system, when using the time-varying ma-
trix

Vd(t) ,
[

vd0(t), vd1(t), . . . , vdnf
(t)

]

=

[

r(t),
dr(t)

dt
, . . . ,

dnf r(t)

dtnf

]

(2)

determined by a given target trajectory r(t) ∈
L2[0, T ] and its time-derivative function, the op-

timal input u∗(t) for generating the target trajec-
tory (that is, for obtaining y(t) = r(t)) is uniquely
determined as

u∗(t) = Vd(t)α (3)

where

α , [α0, α1, . . . , αnf
]T .

In (Hamamoto and Sugie, 2001), the input u(t) in
the iteration and the update law of the coefficient
α is given as

uk+1(t) = Vd(t)α
k+1 (4)

αk+1 = αk + H

∫ T

0

Vd(t)
T Vd(t)dt (5)

where the error signal between the target tra-
jectory r(t) and the output yk(t) is determined
as ek(t) = r(t) − yk(t) in each trial. Further,
H ∈ R(nf +1)×(nf+1) is the learning gain. When
the learning gain which satisfies iterative stability
is chosen,

ek(t) → 0, (k → ∞)

is achieved. Then, the input u(t) and output y(t)
correspond one-to-one,

uk(t) → u∗(t)

so that when
∫ T

0 Vd(t)
T Vd(t)dt > 0, the coefficient

is uniquely determined by (3), therefore,

αk → α

is obtained.

2.2 Continuous-time systems identification from
sampled I/O data

Based on the fundamental idea of the continuous-
time system identification mentioned in Section
2.1, an algorithm utilizing the sampled I/O signals
is concretely derived.

The input signal {uk(nTs), yk(nTs); n =
0, 1, . . . , N} of the k-th trial, which was sampled
with the sampling period Ts, is converted into
vectors uk ∈ RN+1 and yk ∈ RN+1.

In the same way, the optimal input, target tra-
jectory and tracking error are also converted into
vectors u∗ ∈ RN+1, r ∈ RN+1 and ek ∈ RN+1

respectively. Additionally, the time-varying ma-
trix Vd(t) is sampled with the sampling period
Ts, and the longitudinally set matrix is defined
as follows;

Ṽd ,











vd0(0) vd1(0) . . . vdnf
(0)

vd0(Ts) vd1(Ts) . . . vdnf
(Ts)

...
... . . .

...
vd0(NTs) vd1(NTs) . . . vdnf

(NTs)











(6)



where, it is assumed that the matrix Ṽd ∈
R(N+1)×(nf +1) satisfies rankṼd = nf + 1. Fur-
ther, in order to facilitate the description of the
algorithm, for convenience, Ṽd is expressed by
the product of a matrix, which has orthogonal
columns U ,

[

f0, f1, . . . , fnf

]

∈ R(N+1)×(nf +1)

and an upper triangular matrix R ∈ R(nf +1)×(nf+1)

by QR decomposition

Ṽd = UR, UT U = Inf +1. (7)

Then, the problem of this paper is to identify the
coefficient {αi; i = 0, 1, . . . , nf} of (1) from I/O
signals uk and yk of the system by the iterative
learning. Now, by (4), the input uk of the k-th
trial is defined by using an appropriate coefficient
vector ak ∈ Rnf +1 as

uk = Uak. (8)

From (4), we have ak = Rαk. The corresponding
output can be expressed by using appropriate
vectors b ∈ Rnf +1 and c ∈ RN−nf as

yk = Ubk + U⊥ck (9)

where, U⊥ ∈ R(N+1)×(N−nf ) expresses a matrix,
which aligns the base of kerUT .

Further, these coefficient vectors corresponding to
the optimal input u∗ and the target trajectory
r are defined as a∗ and b∗ respectively, and the
coefficient error as

εk
u , a∗ − ak, εk , b∗ − bk (10)

Then, an update law corresponding to (5) is given
by

ak+1 = ak + HUT ek

= ak + Hεk. (11)

The convergence condition of the learning update
law will be shown.

Between the coefficient vectors ak and bk, there
is a certain matrix Lf ∈ R(nf +1)×(nf+1), which
is uniquely determined by (1), and the following
equation is realized.

bk = Lfak (12)

The matrix Lf can be obtained by the output,
when nf + 1 of base vectors {fi; i = 0, 1, . . . , nf}
are input into the system as a pilot study prior
to the iterative learning. The i-th base fi is
added as an input, the corresponding output
be φi, and from the following equation ξi =
[ξi0, · · · , ξinf

]T ∈ Rnf +1 be obtained.

ξi , argmin

∥

∥

∥

∥

∥

∥

φi −

nf
∑

j=0

ξijfj

∥

∥

∥

∥

∥

∥

(13)

Obtained ξi is the i-th column of Lf , and Lf can
be obtained by using each base. From (12), (11)
of the learning law becomes as follows;

ak+1 = ak + HLf (a∗ − ak).

Thereby,

εk+1
u = (I − HLf )εk

u

is obtained, and the condition for the learning to
converge is given by

ρ(I − HLf ) < 1 (14)

where, ρ(A) denotes the spectral radius of matrix
A.

When the learning process converges, ak → a∗

is realized and the true value α of the parameter
is identified by

α = R−1a∗.

As a candidate for the learning gain, which satis-
fies the condition of (14), H = L−1

f will be used

here. Actually, estimated value L̂f of Lf can be

obtained from (13), therefore, H = L̂−1
f is utilized

as the learning gain.

2.3 Learning update law utilized past information

As mentioned above, since inner product of error
is taken in the update law of (11), the measure-
ment noise contained in εk is averaged to have
smaller affect. However, since the information of
the previous trial only is used, therefore, small
perturbation occur in εk for every iteration, so
that as a result, although available I/O data in-
crease with the increase of the trial iteration, it
cannot be reflected to the improvement of the
identification accuracy. Then, by effectively uti-
lizing the information in the trial of the past and
upon averaging the perturbation in the iteration
direction, it is considered to be expanded into
a learning update law, which satisfies learning
convergence conditions.

Firstly, for εk as a filter F (z) for reducing the
perturbation caused in each trial, a first-order low-
pass filter

F (z) =
(1 − λ)z

z − λ
(15)

is considered to be used. Where, z denotes z-
transform operator and the coefficient λ be the
constant of λ ∈ [0, 1]. εk can be considered as a
discrete-time signal in the iteration direction, and
its z-transform can be expressed as Z{εk}. When
the input signal to the filter F (z) of (15) is εk and
the output signal ε̂k,

Z{ε̂k} =
(1 − λ)z

z − λ
Z{εk} (16)



is shown, and when being expressed by the differ-
ence equation, it will be

ε̂k = λε̂k−1 + (1 − λ)εk. (17)

The output signal ε̂k of the filter is utilized as the
learning update law. The filter coefficient λ can
be considered as a forgetting factor, and when it
is set as 1 − λ � 1, it will be to calculate the
ensemble mean of εk sequentially until the k-th
trial, by multiplying a larger weight λ with the
filter output signal ε̂ of the previous trial, and
a smaller weight 1 − λ with εk of the k-th trial,
resulting in the reduction of the perturbation in
the iteration direction.

A filter F (z) will be applied to the update law
of (11). From the viewpoint of the stability of
the iteration, for the coefficient ak, the following
equation using the similar filter is considered.

Z{ak+1} = F (z)Z{(ak + Hεk)} (18)

Using the filter of (15), (18) is expressed by the
difference equation,

ak+1 = âk + H ε̂k

= λ(âk−1 + H ε̂k−1) + (1 − λ)(ak + Hεk).
(19)

Here, â is the output signal of the filter, which has
a similar meaning with ε̂ in (17), being specified
as â0 = 0 and ε̂0 = 0. In the update law, when
the filter coefficient is λ = 0, which results in (11),
and the update law of (19) becomes an extended
update law, which includes the update law of (11)
as its special case. Next, the convergence condition
of the update law will be shown like Section 2.2.
When the (19) is organized using the relation
εk = Lfεk

u, the following relation can be obtained,

εk+1
u = (I − HLf )

{

λε̂k−1
u + (1 − λ)εk

u

}

. (20)

When xk ,
[

εk
u, ε̂k−1

u

]T
is defined as a new state

vector,

xk+1 = Axk (21)

will be obtained. Where,

A ,

[

(1 − λ)(I − HLf ) λ(I − HLf )
(1 − λ)I λI

]

.

Thus,

ρ(A) < 1 (22)

will become a necessary and sufficient condition
for satisfying the iteration stability in the update
law of (19), so that when this condition is fulfilled,
the coefficient of the system can be identified.

Remark 1. As mentioned before, when the mea-
surement noise exist, the true Lf cannot be ob-
tained, so that it cannot be confirmed whether

the iteration stability is fulfilled by (22). However,
by calculating the uncertainty contained in the
estimated value L̂f of Lf , it may be possible to
design the learning gain H , which satisfies (22)
within the range of its uncertainty.

3. NUMERICAL EXAMPLE

In this section, we present a simple simulation ex-
ample to illustrate the properties of our proposed
method. This example is based on the following
third-order continuous-time system;

P (s) =
1

s3 + 10s2 + 30s + 8

The time interval [0, T ] is T = 3[s], and the
sampling period being 5[ms]. Assuming that the
order of the target system is not precisely known,
the system is supposed to be of the fourth order,
and the target trajectory r(t) is given according
to the unit step response

Pr(s) =
104

(s + 10)4
(23)

Further, a time-varying matrix Vd(t), which is
defined by the target trajectory r(t) and its time-
derivative function, is given by the following;

Vd(t) =

[

r(t),
dr(t)

dt
,
d2r(t)

dt2
,
d3r(t)

dt3
,
d4r(t)

dt4

]

and the output of the system is added with the
white measurement noise shown by the following;

|v(t)| < 2.0 × 10−3, ∀t ∈ [0, T ].

Assuming that the initial condition of the system
is 0 and with the initial condition u0(t) = 0, the
result of 100 iterations is shown below. According
to Section 2.2, the coefficient αk is calculated
for every trial, the plotted result being shown in
Fig.1. Though the estimated parameters vary in
each trial, it is found that the denominator coef-
ficient of the target system is almost accurately
estimated. Further, the coefficient α4 of the order
is estimated as approximately 0, which does not
exist in the target system, so that it is possible to
perform identification even when the order of the
target system is not precisely known.

In the update law of (11), since inner product of
the error is taken, the affect of the measurement
noise for each trial is averaged, therefore, the
affect on the input uk+1 is small, which is used
for the next trial. However, when the affect of the
measurement noise is considered from the view-
point of the direction of iteration, independent
measurement noise is added in each trial. Further,
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Fig. 1. Identified coefficients αk using update law
of (11)

0 20 40 60 80 100
−10

0

10

20

30

40

Iteration

C
oe

ff
ic

ie
nt

s

α
α

α

α α

0

1

2

3
4

Fig. 2. Identified coefficients αk using update law
of (19)

since Hεk is calculated for each trial, when the
learning gain H is ill-conditioned, a small pertur-
bation included in εk may result in a large per-
turbation in the coefficient of the target system.
The condition number of the learning gain used
for the numerical example is cond(H) = 2.523 ×
103, and this may cause the deterioration of the
identification accuracy.

In a similar numerical example, the order of the
target system is assumed to be unknown, and the
result of identification using the update law of
(19) in the 4-th system is shown in the following.
The filter coefficient is specified as λ = 0.95. The
result of the calculation and plot of the coefficient
αk for each trial is shown in Fig.2. Although the
convergence is slow because of the filter, it can
be confirmed that the result is converged to each
coefficient of the target system, obtaining a better
result compared with Fig.1.

With these results, we can confirm that pa-
rameters of the continuous-time system can be
identified by using the iterative learning algo-
rithm within prescribed input-output subspace
and without the use of time-derivative of I/O
signals.
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Fig. 3. Identified coefficients αk using FMF
method

Next, the comparison will be made with the con-
ventional continuous-time system identification
method. Because conditions of identification, such
as input signal to be used, are different, a com-
parison cannot simply be performed with regard
to the identification accuracy, however, an exam-
ple of the identification result by FMF(Fourier
Modulating Function) method will be shown for
reference. It is assumed here that the order of
the target system is known to be three and the
sampling period being 5 [ms]. If we assume that
the plant is of the fourth order as before, it turned
out that the identification result is quite poor. It
is assumed that the input signal is white noise
and as for the output signal, the signal is con-
taminated with white measurement noise. The
magnitude of the noise was defined in such a way
that the measurement noise signal ratio (NSR)
to the output is approximately equal to those of
the conventional numerical examples. The number
of sampled I/O data is 601, which is equal to
the number of sampled I/O data employed for
one trial of the numerical example in a proposed
method, and 20 pairs of I/O data were prepared.
The plot of the coefficient αk, which was identified
by using each I/O data is shown in Fig.3. In this
numerical example, it can be confirmed that with
this proposed method, when compared with the
conventional identification method, a favorable
identification accuracy is obtained without trial
and errors and with less I/O data.

4. EVALUATION OF IDENTIFICATION
ACCURACY

In this section, the identification accuracy will be
evaluated for numerical examples in Section 2.3
and 3.2.

Firstly, it is confirmed that, in the identification
by the update law using the filter of (19), the
identification accuracy is improved in each trial by
Hankel norm ‖P (s)− P̂ (s)‖H of the error system
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Fig. 4. Hankel norm ‖P (s) − P̂ (s)‖H

(Fig.4). In the figure, the solid line shows the case
when λ = 0.95 is chosen in the update law of
(19), and the dotted line showing λ = 0, that
is, the one using the update law of (11). The
filter coefficient λ defines the relation of trade-off
between the attenuation rate of the perturbation
included in εk and the speed of convergence in
learning. Looking at the Hankel norm of the error
system, the role and effect of the filter coefficient
λ clearly appear.

The proposed method is to perform the identifi-
cation of the target system based on I/O signals,
while making the output follow the target tra-
jectory, which was given in the iterative learning
control, having the following advantages;

• Pre-information of the target system is little,
and it is not necessary to prepare I/O sig-
nals in advance like conventional identifica-
tion methods and to perform pre-processing,
therefore, trial and errors in the identification
operation is hardly required.

• By utilizing the iterative learning algorithm
within prescribed input-output subspace, time-
derivative of I/O signals is not required. On
the contrary, an averaging operation by inner
product is used.

• The decision whether the identification is
possible or not is equivalent to the conver-
gence of the iterative learning control pro-
cess, and when the learning is achieved, the
identification result can be obtained, which
ensure a certain target tracking accuracy, and
at the same time, the validity of the identifi-
cation result being investigated.

5. CONCLUSION

In this paper, we have proposed an identifica-
tion method for a class of linear continuous-time
systems based on the iterative learning control
(ILC) method, which is entirely different from
conventional ones in a sense that no information

on time-derivative of I/O signals is necessary at
all. First, we showed the basic idea on the use of
ILC to the identification. Then its concrete digital
implementation has been given explicitly. Second,
one way to make the method robust against the
measurement noises has been proposed. Finally,
numerical examples are given to illustrate the
effectiveness of the proposed method.

At the current stage, the robustness of our method
against measurement noises are similar to the ex-
isting ones and it can be applicable to a restricted
class of systems. However, since the identification
of parameters is done through tracking control, we
are able to confirm the quality of the identified
system model by watching the actual tracking
error. This may be some advantage compared to
the conventional ones. Therefore, it is considered
to be meaningful as the first step toward a new
framework of continuous-time system identifica-
tion.
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