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Abstract: This paper describes extension of DB(n) control algorithm which improves the 
behaviour quality of control processes with time delay. This extension is called eDBd al-
gorithm and it can function even if controller output is limited. The synthesis was derived 
for control loop with proportional third order behaviour of a controlled plant. However, 
the algorithm can be generalised for controlled plants with higher order and applied for 
plants with non-minimal phase, for plants with time delay and also for plants with combi-
nation of non-minimal phase with time delay. This is shown in simulation experiments, 
which are described in the paper. For experimental evaluation of the control algorithm in 
real time, hardware in loop simulation was used, which replaces analogue model of real 
plant with A/D and D/A converters and PC as a controller.   Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Discrete version of time optimal control or DB(n) 
algorithm is generally known as an elementary con-
trol algorithm. Its disadvantage is a great jump of 
actuating variable usually exceeding actuating vari-
able limitation. The author derived three extensions 
of DB(n) algorithm where this limitation is respected. 
First extension is the anti windup extension of classi-
cal DB(n) algorithm - eDB algorithm. The second is 
the state space version of eDB algorithm (Alexik, 
2002). The third extension is a version of eDB algo-
rithm, which improves behaviour quality of control 
processes with time delay. This version is called 
eDBd algorithm. All described algorithms are the 
best ones from algorithms operating only with output 
from controlled process. The synthesis was derived 
for control loop with proportional third order con-
trolled plant. However, the algorithm can be general- 
ised for controlled plants with higher order, and ap-
plied for plants with non-minimal phase, for plants 
with time delay and also their combination, as is 
shown in simulation experiments. Real time continu- 
ous identification of plant parameters consecutive- 
ness of control algorithm parameters synthesis also 
enabled us to realize adaptive control with eDB algo-

rithm (Alexik, 2001). Verification of adaptive eDB 
and eDBd algorithms in real time was carried out by 
block the scheme depicted in Fig. 1. 
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Fig 1.Block scheme in algorithms verification. 
 
The paper is organised as follows. Section 2 de- 
scribes extensions of both versions of eDB and eDBd 
algorithm, section 3 describes real time operating 
model of the controlled plant and section 4 digital 
and real time simulation experiments. The paper ends 
with a conclusion and an outlook in Section 5. 



     

2. DB ALGORITHMS FOR PROCESS WITH 
DEAD TIME 

 
Control of time-delayed processes is a known prob-
lem and many researchers work in this area. Block 
scheme in Fig, 2a shows a classical control loop with 
dead time process, and Fig 2b shows control loop 
where dead time process is between controlled proc-
ess and control algorithm (e.g. control through inter-
net). An interesting analytical approach to PID algo-
rithm design for dead time processes were published 
in (Vitečková, 1999) and (Žáková, 2003). Both au-
thors described a procedure to find such proportional 
gain of PID algorithm (smaller as for d=0), which 
provides stability as well as suitable quality of set 
point response. After every proceeding, which sig-
nificantly decreases proportional gain in PID algo-
rithm, the set point response quality is much worse 
than in performance that is only time delayed of pre-
vious response, or it is response from actuating vari-
able computed for system without dead time but ap-
plied to system with dead time (Control loop with 
Schmidt predictor). The comparison of these pro-
ceedings is shown on Fig. 3, the controlled process 
for this example is from (Schlegel, at all, 2003). On 
set point responses on Fig.3 is documented a signifi-
cantly better loop response quality for loop with 
Schmidt predictor in comparison with classical 
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Fig. 2 Block scheme of control loops with dead time. 
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Fig. 3 Set point responses and control signals of dead 

time process controlled by PID algorithm. 

control loop (see settling time „treg“ and overshoot 
„σ“ for output y2(t)). The fact, that time behaviour of 
actuating variables u1(k) and u2(k) are the same is 
essential. 
It will be appropriate to find a control algorithm 
which could provide set point responses as “y2(t)” on 
Fig. 3, but for classical control loop structures from 
Fig. 2. Such an easy compensation is possible only 
(at discrete realization of dead time only) with algo-
rithm DB(n) as is shown from following procedure. 
Consider classical control loop with dead time proc-
ess and DB(n) algorithm (1). Set point response (2) 
in this case has the same performance as in loop 
without dead time process, however response in con-
sidered case (2) is time-delayed. Controller output 
u(k) (3) has the same performance, without time de-
lay, in the considered case (dead time process) as 
well as in control loop with process without dead 
time.  
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Resulting set point responses for processes with dead 
time (2) should have the same quality, as ones with-
out dead time and it would only be shifted in time of 
“d” sampling intervals. In the equation (2) it is con-
sidered linear transfer function R(z). In real control 
loops, transfer function of controller is not linear, 
because computed controller output is often out of 
controller limits. In such case, responses with over-
shoot are being produced. 
Since even small time delay will also cause response 
overshoot, control signal rising to limitation, or flips 
from one extreme to the other. Therefore a control 
algorithm can be realized only when an anti-windup 
version of algorithm is provided, which is docu-
mented on Figure 4 in set point w2 and w3 responses. 
In assumed DB(n) algorithm it is needed to realize 
such computation, which will secure anti –windup 
performance of step response. Classical DB(n) algo-
rithm does not have this performance, therefore in the 
next part of paper will be describe an extension of 
classical DB(n) algorithm to the form, which works 
well also under the controller output limitation. 
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Fig. 4 Comparison of classical and extended DB(n) 

control on closed loop with time delay. 
 
 
2.1. Extension of DB Algorithm 

Synthesis of parameters for known structure of 
DB(n) algorithm comes out from Z transform func-
tion (1) of controlled plant. The disadvantage of DB 
algorithm is a great jump of actuating variable. These 
jumps are computed from demand of discrete time 
optimal transient response behaviour of control loop. 
Actuating variable (equation (6)) cannot be realized 
in any case, considering D/A converter output limita-
tion and this limitation is cause of follow-up con-
trolled output overflow as depicted on Fig. 5. The 
first part of Fig. 5 (control loop response for set point 
w1) is without overshoot, because the actuating vari-
able is under limitation. In the second part of Fig. 5 
there is overshoot for classical DB(n) algorithm. Ac-
tuating variable for classical DB(n+1) algorithm is 
under D/A converter output limitation. In great 
change of set point (third part of Fig. 5 – set point 
w3) only eDB algorithm provides response without 
overflow respecting actuating variable limitation. 
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Fig. 5 Comparison of classical and extended DB(n) 

algorithm. 
 
The presented eDB algorithm (8) has the most impor-
tant attribute – the ability to assure discrete time op-
timal control in despite of manipulated variable limi- 
tation. This is secured by extended – an anti windup 
part of the algorithm. Derivation of PID version was 

described by an author in (Zentko and Alexík 1986) 
and derivation of eDB version in (Alexik, 2002). 
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Derivation of extended form of DB algorithm (7) is 
outgoing from demand on equality of state space 
variables from linear part of controller output (x(k) – 
see Fig. 6) and non-linear (xo(k)) state variables in the 
steady state.  
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Fig. 6 Block scheme of extended DB(n) algorithm. 
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A modal state space algorithm can obtain similar 
behaviour of feedback responses, however eDB algo-
rithm (7) does not need a state estimator. State space 
form (9) of eDB algorithm is easier (7) because there 
is less arithmetic operation. 
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Simplification of equation (7) to the form (10) is bet-
ter before is executed eDBd extension. 



     

2.2 .Robustness of eDB Algorithm 
 
There is an important question. What effect does 
plant parameters change have on control loop per- 
formance quality for untouched parameters of control 
algorithm? Or in other words, what is the robustness 
of the control algorithm? From Fig. 7 it can be seen, 
that the quality of the control loop response is not 
affected by controlled plant parameter changing. Al- 
gorithm synthesis has been done for the nominal 
model. The picture figures that after changing plant 
parameters within plus or minus 20 % (not only time 
constant but also gain) but with controller parameters 
for nominal model, the quality of the loop response is 
not changing substantially. Consequently there is 
potential presumption that if synthesis of DB(n) algo-
rithm parameters are done by identified parameters of 
controlled plant, although identification errors are + - 
20%, the quality of control loop response won’t be 
changing substantially. It comes to this, that it is ap- 
propriate to execute identification of a higher order 
plant as controlled plant with third order for which 
was eDB algorithm derived. The conjunction of con- 
tinuous identification with eDB algorithm synthesis 
on this presumption enables a higher order controlled 
plant adaptive control. Extension eDB synthesis abil-
ity for more structure of controlled plants is enabled 
by Z - transform behaviour as is documented on 
equation (12) to (14). Controlled plant, which is de- 
scribed in continuous domain by third order transfer 
function without or with one or two positive or nega- 
tive zeros (13), is described with the same transfer 
function structure (14) in discrete domain. 
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Fig. 7. Effect of controlled plant parameters changing 

to control loop performance quality. 

2.3 .Extension of eDB with Dead Time 
 
By time delay compensation we apply the same 
transfer function structure of discrete closed loop as 
in structure from Fig. 2 for continuous closed loop. 
This simple compensation is working only by dis-
crete realization of dead time and only by DB(n) al-
gorithm as was shown in equation (1) and (2). As it 
was commented in part 2, controller (1) for processes 
without dead time can be realized only when an anti-
windup version of algorithm is provided. In part 2.1 
this version of algorithm –eDB was commented and 
formulate as equation (7). Calculation of dead time 
ergo “z-d” (for d > 0) in equation (3) represents shift 
of controller output “u(k-i)” and modification of 
equation (7). Adapted algorithm is represented by the 
equation (15). 
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Derived algorithm (15) is appropriate considered as a 
new modification of DB algorithms, called eDBd, 
because it can be applied on control time-delayed 
process. Initialization resetting of parameters, vari-
ables, shifting of error and output in every sampling 
interval is assumed. Algorithm (15) is formulated for 
a third order controlled processes because it is possi-
ble to model a higher order processes with the third 
order by adaptive control with continuing identifica-
tion, as it is commented in (Alexík, 2001). Also state 
version of eDBd algorithm, as well as (9) for eDB, 
can be formulated. 
 
 

3. MODEL OF THE PROCESS. 
 
For evaluation of control algorithms, the hardware in 
loop simulation in comparison with the digital one is 
more suitable. In our case it is the continuous process 
modelled with the discrete/continuous model work-
ing in real time. The technical design of the model on 
Fig. 9 enables us to model the controlled plants of the 
first to the nine orders and also to change some pa-
rameters and the structure of the controlled system, 
which is suitable for the evaluation of robustness of 
the control algorithm. Fig. 8 shows and describes 
patching panel of model for controlled processes with 
time delay. The dynamics of the process realised with 
the model under Fig. 8 and Fig. 9 is described with 
continuous transfer functions and then is re-
calculated to parameters of Z transfer function. Micro 
controller on Fig. 9 calculates differential equation, 
which represents continuous controlled plants. A/D 
and D/A conversion, differential equation computa-
tion and output signal shift in the time delay buffer 
“D” are executed with sampling interval 10 [ms]. It is 



     

also possible to connect a model such as the MIMO 
system with 2 inputs and 2 outputs.  
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Fig. 8. Patching panel of the model. 
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Fig. 9. Electronic scheme of plants model. 
 
 

4. REAL TIME SIMULATION EXPERIMENTS 
DESCRIPTION 

 

Real time simulation experiments are also called 
hardware in loop simulation (HIL) or hybrid simula- 
tion, because the controlled variable is scanned in 
real time by a A/D converter from hardware realized 
model of controlled plant described in previous sec-
tion. If we can to identify parameters along with dead 
time in time delayed processes then it will be possi-
ble to control processes with variable dead time. 
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Fig. 10. Adaptive control of dead time processes 

At present time author can identify up to three sam-
pling intervals of  dead time and also parameters of 
third order process. Then adaptive control for this 
kind of time-delayed processes was verified. Illustra-
tion of this is given in Fig. 10. There is HIL simula-
tion of a closed loop system with time-delayed proc-
esses where the adaptive controller is designed by an 
eDBd method. 
Illustration of the classical dead time process control 
is given in Fig. 11, which is a PC simulation of a 
closed loop system with time-delayed processes 
where the controller is designed by an eDBd method 
and processes are the test batch from (Astrom, and 
Häglund 1995) as typical industrial processes. In this 
case we find that the sampling interval T0= 0.25, 0.5, 
and 1 [s] is suitable for dead time but too small for 
process time constant (T= 5 s), but against expecta-
tion set point responses are with quality behaviour 
only a big change of the set point produces a small 
overshoot. The reason for this is that the controller 
output is limited from both maximum and minimum 
limitation, but responses are with good time behav-
iour. New modification of state space eDBd algo-
rithm could solve this problem. 
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Fig. 11. Control of classical time delayed process. 
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Fig. 12. Control of process with non-minimal phase 

and time delay by eDBd algorithm. 
 
On Fig. 12, there is a PC simulation of a closed loop 
system with non-minimal and time-delayed processes 



     

where the controller is designed by an eDBd method. 
Denominator of transfer function of the process is the 
test batch from (Astrom and Häglund 1995) as typi-
cal industrial processes and nominator is added as 
typical non-minimal phase. In this case we find that 
the sampling interval T0 = 0.5, and 1 [s] is suitable 
for dead time and also for process time constant (T= 
1 s), and as is expected set point responses are with 
good quality behaviour. In part 2.1 of article (transfer 
function (13), (14)) was commented the possibility 
and a reason why eDB algorithm is able to control 
non-minimal phase processes. 
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Fig. 13. Control of process with dominating dead 

time. 
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Fig. 14. Disturbance compensation by eDBd control. 
 
Real time HIL simulation of a closed loop system 
with processes whose dynamics is dominated by dead 
time is shown on Fig. 13 and Fig. 14. Times constant 
of the process and dead time are the same. Fig. 14 
shows that the load-disturbance response is excellent 
in case the disturbance is measured. Without distur-
bance being measured, dead time produces load-
disturbance responses with big overshoots and set-
tling time. It is needed to verify presented eDBd al-
gorithm in detail and revise some problems such as 
overshoot on small sampling interval and its compen-
sation by state space form of eDBd algorithm. 

5. CONCLUSIONS AND OUTLOOK 
 
Based on present experience, the laboratory verifica-
tion of eDBd control algorithm for time-delayed 
processes on described hardware in loop simulation 
provides good results. In this paper descriptions of 
adaptive eDB and eDBd algorithms have been given. 
Simulation experiments were realised in program 
environment ADAPTLAB, developed and realised 
by author. It is suitable for developing and verifica-
tion of classical as well as adaptive control algo-
rithms for SISO and MIMO control loops. The pro-
gram can be used in two basic modes: simulation and 
measurement. The simulation mode works with con-
tinuous transfer function set by operator. In the 
measurement mode the output (input) from model of 
the plant described in Section 3 is measured with 
A/D (D/A) converter with sampling interval con-
trolled by real time clock or interrupt from A/D con-
verter. Verification of eDBd algorithm documented 
excellent quality of set point and load-disturbance 
responses in closed-loop system with time-delayed 
processes. However it is needed to verify eDBd algo-
rithm in detail and revise the problem with overshoot 
by small sampling interval. To solve this problem, 
different compensation with state variables of eDBd 
algorithm is needed. 
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