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Abstract: The problem of analysing the worst-case performance of a nonlinear
aeroelastic system is formulated as an optimisation problem and solved using
gradient-based local optimisation methods. Two different approaches are consid-
ered. The first formulates the optimisation problem in the classical Euler-Lagrange
setting and computes the gradient by backward integration of the resulting adjoint
system. The second uses a Sequential Quadratic Programming (SQP) method
which solves a Quadratic Programming (QP) subproblem at each iteration. The
performance of both approaches is evaluated in terms of computational complexity
and numerical accuracy, and compared with a standard industrial approach based
on gridding the uncertain parameter space. Copyright c©2005 IFAC
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1. INTRODUCTION

The robustness analysis of linear time invariant
(LTI) systems subject to parametric and/or non-
parametric uncertainty is now a relatively mature
subject, and many powerful tools are available
which can readily be applied to practical prob-
lems - see for example (Ferreres, 1999; Bates and
Postlethwaite, 2002) for an overview of recent
aerospace applications. The robustness analysis of
nonlinear systems is, of course, a much more dif-
ficult problem, and, so far, most developments in
this area have been at a theoretical level. Methods
for computing upper bounds on robust stability or
performance generally rely on generalisations of
Lyapunov or Small-Gain theories, and are often
computationally intractable and prone to conser-
vatism. Due to the inherent non-convexity of the
uncertain parameter space in nonlinear problems,
very few methods are available with which to
compute lower bounds on either robust stability
or performance - the current industry standard
is exhaustive nonlinear simulation using either

stochastic (Monte-Carlo) or deterministic (grid-
ding the uncertain parameter space) approaches,
(Fielding et al., 2002).

In (Tierno et al., 1995), a promising new ap-
proach to nonlinear robust performance analysis
was presented, which formulated the problem in
the classical Euler Lagrange optimisation setting,
(Bryson et al., 1975). In this approach, gradient
information is calculated via backward integration
of an adjoint system, and a numerical algorithm
for computing local solutions, i.e. lower bounds
on worst-case performance, was described. This
algorithm was applied successfully to the robust
performance analysis of a ducted fan experimental
test rig in (Tierno, 1996) and an F-16 autopi-
lot simulation in (Gregory and Tierno, 1996). In
(Ledegang, 1999), however, disappointing results
(in particular, very poor convergence properties)
were reported with the use of this approach for
the robust performance analysis of a control law
for a Cessna Citation aircraft.



In this paper, we apply a modified version of
the approach proposed in (Tierno et al., 1995)
to the robust performance analysis of a nonlinear
aeroelastic system, (Strganac et al., 2000). Instead
of updating the current estimate of the worst-
case uncertain parameters using a simple steepest
ascent method, as proposed in (Tierno, 1996), we
use the Minimisation Rule (Bertsekas, 1999). 1

While this modification results in significantly im-
proved convergence properties for the algorithm,
some other practical difficulties with calculating
gradient information via integration of the adjoint
system are revealed in our study. As an alterna-
tive, an approach based on Sequential Quadratic
Programming (SQP) is also proposed and evalu-
ated.

2. A NONLINEAR AEROELASTIC SYSTEM

In this section, we briefly describe the aeroelastic
system analysed in this study.
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Fig. 1. The Aeroelastic system.

The aeroelastic system is a nonlinear model of a
NACA 0012 airfoil with two degrees of freedom,
i.e., angle of attack, α, and plunge displacement,
h, which are shown in Figure 1. The equations of
motion for the system are given by
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(1)

wheremT is the total mass,mW is the mass of the
wing only, and Iα is the moment of inertia about
the elastic axis. The terms a and xα represent
the non-dimensionalised elastic axis and center
of mass locations by the length of midchord, b,
respectively. The location of the elastic axis, a,
has a significant role in determining the overall
stability of the system, however, its exact location

1 In this paper we consider parametric uncertainty only
- the approach of (Tierno, 1996) also considers signal
uncertainty.

is very difficult to determine accurately. To reflect
this fact, it is represented in the model as

a = ã+ ∆a (2)

where ã is a nominal value and ∆a is the predicted
level of uncertainty. The terms ch and cα are the
plunge and pitch structural damping coefficients,
and the structural stiffness for the plunge and
pitch motions is given by kh and kα, respectively.

The term kα(α) is a nonlinear function of α, given
by (Strganac et al., 2000):

kα(α) =

∞
∑

i=0

kαi
αi [N·m/rad] (3)

where the kαi
’s are constants. For numerical sim-

ulation purposes, the following 4th-order approxi-
mation is used for kα(α) (Strganac et al., 2000):

kα(α) = kα0
+kα1

α+kα2
α2+kα3

α3+kα4
α4 (4)

where each of the coefficients is given by

kαi
= k̃αi

+ ∆kαi
(5)

for i = 1, 2, . . . , 4 and ∆kαi
represents a bounded

level of uncertainty for each coefficient. As shown
in (Strganac et al., 2000), the above approxi-
mation closely matches experimental results for
deviations in α up to ±11.49◦. In addition, the
following quasi-steady aerodynamic model for the
lift, L, and the moment, M are used (Strganac et
al., 2000):

L = ρU2 b clα
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M = ρU2 b2 cmα
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+ ρU2 b2 cmβ β (6b)

where ρ is air density, U is the freestream velocity,
clα and cmα are the aerodynamic lift and mo-
ment coefficients, respectively, and β is the flap
defection. The freestream velocity, U , is another
significant source of uncertainty in the model and
is given by

U = Ũ + ∆U [m/sec] (7)

where again Ũ denotes the nominal value and ∆U
a bounded level of uncertainty.

The state-space form of (1) is given by

φ̇(t) = f(U, a, kα) +B(U, a)β (8)

where

φ =
[

φ1, φ2, φ3, φ4

]T
=

[

α α̇ h ḣ
]T

(9a)

f(U, a, kα) =
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(9b)

B(U, a) =
[

0, g4U
2, 0, 0

]T
(9c)



Table 1 Fixed parameters

Parameter Value
mT 12.3870 [kg]
mW 2.0490 [kg]

b 0.1064 [m]
ρ 1.225 [kg/m3]
cα 0.036 [kg·m2/sec]
clα 6.28
clβ 3.358
cmβ -1.94
ch 27.43 [kg/sec]
kh 2844.4 [N/m]

Table 2 Uncertain parameters

Nominal Value Uncertainty

Ũ = 16.0 −2.00 ≤ ∆U ≤ 2.00
ã = -0.6 −0.15 ≤ ∆a ≤ 0.15

k̃α0
= 6.833 −0.68 ≤ ∆kα0

≤ 0.68

k̃α1
= 0.0 9.00 ≤ ∆kα1

≤ 11.00

k̃α2
= 0.0 600.92 ≤ ∆kα2

≤ 734.45

k̃α3
= 0.0 23.91 ≤ ∆kα3

≤ 29.23

k̃α4
= 0.0 −4579.14 ≤ ∆kα4

≤ −5596.72

Table 3 Dependent parameters

Parameter Value
cmα (0.5 + a) clα

xα [0.0873 − (b + a · b)] /b [m]
Iα mW x2

α b2 + 0.0517 [kg·m2]

See (Strganac et al., 2000) for the definitions of
the other terms.

The value of each fixed parameter in the model
is given in Table 1. There are seven uncertain
parameters in the model, and the nominal value
and the uncertainty bound for each of these para-
meters is given in Table 2. Three other parameters
in the model, which are functions of the uncertain
parameters, are given in Table 3.

In (Strganac et al., 2000), a control law to regulate
angle of attack by adjusting the flap deflection
angle β was designed for the nominal system

φ̇ = f(Ũ , ã, k̃α) +B(Ũ , ã)βdesired (10)

Using feedback linearisation, the desired control
input for the flap deflection angle is computed as:

βdesired =
−f1[φ̃] − p1φ1 − p2φ2

g̃4 Ũ2
(11)

where p1 and p2 are the control gains and are given
by 4 and 1.2, respectively. 2 For this control law,
the resulting zero dynamics are Hurwitz stable in
the range of −1 ≤ a ≤ 1 and 0 < U ≤ 30 [m/sec],
(Strganac et al., 2000). By physical limitation, the
actual flap deflection is restricted as follows:

β = sign(βdesired) min(|βdesired|, 12◦) (12)

2 In (Strganac et al., 2000) an adaptive control law is
also designed to estimate the nonlinear torsional spring
constants, kαi . For simplicity, only the fixed gain part of
the controller is used here.

3. ROBUST PERFORMANCE ANALYSIS

In (Tierno et al., 1995) the robust performance
analysis problem was formulated using the follow-
ing finite L2 gain cost function:

max
xδ∈∆δ

J =

∫ tf

t0

L(t)dt =
1

2
‖g(x)‖2

2 (13)

where t0 and tf are fixed, g(x) is a piecewise
continuous function, the cost function is subject
to

ẋ = f(x, xδ) (14a)

ẋδ = 0 (14b)

and the initial conditions are given by

x0 = x(t0) (15)

∆δ is a hyperbox in <p, where p is the number
of uncertain parameters. Bounds for the values of
the uncertain parameters xδi

are given by

xδi
≤ xδi

≤ x̄δi
(16)

for i = 1, 2, . . . , p, where xδi
and x̄δi

are con-
stants. Hence, the problem is to find the optimal
initial condition xδ to maximize the cost function.

For the aeroelastic system given in (1), the vector
of uncertain parameters is given by

xδ =

[

∆U ∆a ∆kα0
∆kα1

∆kα2
∆kα3

∆kα4

]T (17)

where the bound for each parameter is given
in Table 2. To avoid numerical problems, each
uncertain parameter is normalised so that it is
bounded as follows:

−1 ≤ xδi
≤ 1 (18)

for i = 1, 2, . . . , 7.

Since the main control objective in the aeroelas-
tic problem is regulation of angle of attack, an
appropriate cost function for robust performance
analysis is

max
xδ∈∆δ

J =
1

2

∫ tf

t0

Q1 α
2(t) +Q2 α̇

2(t)dt (19)

where Q1 and Q2 are positive scaling factors,
given by 10 and 1, respectively, which are used
to (approximately) equally penalise large values
of α and α̇, and t0 and tf are set equal to 0 and
5 sec, respectively. The initial condition for (1) is
given by

α(t0) = 0.0483 [rad] (20a)

α̇(t0) = 3.1819 [rad/sec] (20b)

h(t0) = 0.0135 [m] (20c)

ḣ(t0) = 0.2485 [m/sec] (20d)

3.1 Gridding the Uncertain Parameter Space

For the purposes of comparison, the worst case
value of the cost function in (19) was evaluated for
all possible combinations of the extreme points of



the uncertain parameters. This required 27 = 128
cost function evaluations. The maximum value of
the cost function found was 9.3341 and the cor-
responding worst-case combination of uncertain
parameters is given by

xδ =
[

−1 −1 −1 +1 −1 +1 +1
]

(21)

These results can be considered as the current
industrial benchmark for this type of problem,
(Fielding et al., 2002). Note that the exponential
increase in computation time places severe limits
on the number of uncertain parameters that can
be considered under this approach. In addition,
since only the vertices of the uncertain parameter
space are checked, worst-cases that occur in the
interior of the parameter space are guaranteed to
be missed a priori.

3.2 Euler Lagrange Optimisation Framework

In the classical Euler Lagrange framework, the
augmented cost is given by

J =

∫ tf

t0

gT g + λT [f − ẋ] + λT
δ [0 − ẋδ]dt (22)

where λ̃ and λδ are the Lagrange multipliers.
Taking the first variation of this cost, δJ , gives
the following adjoint system: 3

λ̇ = −

(

∂f

∂x

)T

λ−

(

∂g

∂x2

)T

y (23a)

λ̇δ = −

(

∂f

∂xδ

)T

λ (23b)

with boundary conditions:

λ(tf ) = 0 (24a)

λT
δ (tf ) = 0 (24b)

Practically, to obtain (23) could be very lengthy
and tedious process. Thus, δJ becomes:

δJ = λT
δ (t0)δxδ (25)

The initial value of λδ can, therefore, be inter-
preted as the gradient of the cost function with
respect to the uncertain parameters, i.e.,

λT
δ (t0) =

∂J

∂xδ









t=t0

(26)

λδ(t0) can be obtained at each numerical iteration
by backward integration of the adjoint system,
(23), with the final condition, λδ(tf ) = 0. Con-
sidering the Lagrange multiplier term by term

λδi
(t0) =

∂J

∂xδi









t=t0

(27)

for i = 1, 2, . . . , p there are three possible values
for the initial condition:

x∗δi
=











xδi
= x̄δi

and λδi
(t0) > 0

xδi
= xδi

and λδi
(t0) < 0

xδi
≤ xδi

≤ x̄δi
where λδi

= 0

(28)

3 The gradient is row vector in this paper.

More details of the Euler Lagrange framework can
be found in (Bryson et al., 1975).

The original update law used in (Tierno et al.,
1995), (Gregory and Tierno, 1996), and (Tierno,
1996) is given by

xuncnst
δi

= xcurrent
δi

+ λδi
(t0) (29)

for i = 1, 2, . . . , r, so that

xupdated
δi

=











xδi
, for xuncnst

δi
< xδi

x̄δi
, for xuncnst

δi
> x̄δi

xuncnst
δi

, otherwise

(30)

for i = 1, 2, . . . , p. Since the update law, (29),
is in the steepest ascent direction, it will have all
the disadvantages of steepest direction methods,
such as slow convergence along a long smooth
hill (Bertsekas, 1999). Indeed, very slow conver-
gence of the original algorithm was reported in
(Ledegang, 1999), where the algorithm was ap-
plied to find the worst-case uncertain parameter
combination for a Cessna Citation aircraft model.
To avoid this problem, the xuncnst

δ can be updated
in the following way:

xuncnst
δi

= xcurrent
δi

+ γkλk
δi

(t0) (31)

where k is the iteration step, and γk is the step-
size to be determined. The step size γk can be
chosen using the Maximisation Rule 4 or Armijo’s
Rule. In this paper the Maximisation rule is
adopted and the algorithm is given by

γk = arg max
γ∈(0, γmax]

J
[

xk
δ + γλk

δ (t0)
]

(32)

where γmax is a positive constant. Also, the fol-
lowing successive step-size reduction formulation
is used:

γk = ψmγmax (33)

where ψ is equal to 1/2, γmax is equal to 1 and m
is the smallest integer such that

J
[

xcurrent
δ + γkλk

δ (t0)
]

≥ J
(

xcurrent
δ

)

(34)

The line search is completed with respect to γ
at each iteration. More details of this scheme can
be found in (Bertsekas, 1999). Finally, the stop
condition is given by

∣

∣

∣
J

(

xupdated
δ

)

− J
(

xcurrent
δ

)

∣

∣

∣
≤ ε

∣

∣λinitial
δ

∣

∣ (35)

where ε is equal to 10−6.

3.3 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a
powerful nonlinear programming method which
has been applied to a wide variety of problems.
In each iteration of SQP, the nonlinear optimi-
sation problem is approximated as a Quadratic
Programming (QP) problem and the QP is solved

4 In minimisation problems this is known as the minimi-
sation rule.



Table 4 The cost function values for 100 trials

Method Min Max Average Standard Deviation
Gridding 1.4643 9.3341 3.5131 2.2837

Euler Lagrange 2.0608 9.3691 8.4046 1.4522
SQP 1.8996 9.3909 8.6654 2.1254

Table 5 Number of cost function evaluations for 100 trials

Method Min Max Average Standard Deviation Total
Gridding N/A N/A 27 = 128 N/A N/A

Euler Lagrange 45 759 340.4 200.9 34041
SQP 53 910 221.5 181.7 22154

using the Lagrange method, active set method,
etc (Fletcher, 1981).

The QP problem corresponding to (13) is given
by (Fletcher, 1980)

min
sk∈<p

1

2
skT

Hksk +
∂J

∂xδ

∣

∣

∣

∣

xδ=xk
δ

sk (36)

where Hk is the Hessian to be approximated and
the gradient of J(xδ) is computed using a finite-
difference approximation. Then, the solution for
sk is determined using some QP algorihtm. Since
the search direction is determined in the above
equation, the xδ is updated as follows:

xuncnst
δi

= xcurrent
δi

+ γksk (37)

where γk is determined by the same maximisation
rule as was used in the previous section. Finally,
the Hessian is approximated using the BFGS
formula, which can be found in (Fletcher, 1980).
The stop condition is the same as (35).
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4. RESULTS AND DISCUSSION

Results for both optimisation schemes, for 100
trials with random initial guesses for the para-
meters, are given in Table 4 and 5. From the
tables, it is clear that all three methods are almost
equally good in terms of finding the maximum
value of the cost function. As shown in Figure
2, however, there exist significant differences in
the computational performance of each algorithm.

For the gridding approach, only a few of the 128
points are close to the maximum value of the cost
function. The much smaller number of function
evaluations required by the gridding approach is
also only due to the small number of uncertain pa-
rameters considered, i.e., 7. This advantage imme-
diately vanishes when the number of parameters
increases, for example, for 15 uncertain parame-
ters the number of function evaluations required
is 32,768.

The Euler Lagrange approach provides a math-
ematically attractive formulation of the problem,
but is heavily reliant on having a fast and accurate
numerical integration algorithm for the adjoint
system. As shown in Table 4, the maximum value
found with the Euler Lagrange approach is greater
than the one with the gridding approach, but
still smaller than the one found with the SQP
method. Also, the Euler Lagrange approach re-
quires 10,000 more function evaluations in total
than the SQP. 5 This is again due mainly to nu-
merical errors arising in the integration of the dif-
ferential equations for the adjoint system. Because
of the inaccuracy in the integration, the gradients
point in the wrong direction and the resulting
convergent points are scattered in various region
of the uncertain parameters space. The SQP gave
the best results among three methods, as it found
the maximum value of the cost function and for
most of the 100 trials converged to points very
close to the maximum value. The corresponding
worst case uncertain parameter combination for
the maximum is as follows:

x∗

δ
=

[

−0.9 −0.9 −1.0 +1.0 −1.0 +1.0 +1.0
]

(38)

Note that ∆U∗ and ∆a∗, are not on the boundary
of their possible range of variation. This type
of solution can never be found by a gridding
approach unless it has very fine gridding, which
is computationally prohibitive in practice.

With the initial conditions for the system given
in (20), in the absence of any control input the
nominal system goes into a limit cycle. When the
control input given by (11) is applied, the response
converges to the origin as shown in Figure 3. If the
system model is subsequently changed to those
values of the uncertain parameters given in (38),

5 In addition, the integration of the adjoint system takes
significantly more time than is required for integration of
the original system.
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however, a limit cycle is once again generated in
the response, as also shown in Figure 3. Time
histories of the control signal for both cases are
shown in Figure 4.

5. CONCLUSION

The problem of analysing the worst-case perfor-
mance of a nonlinear aeroelastic system was for-
mulated as an optimisation problem and solved
using gradient-based local optimisation methods.
Two different approaches were considered. The
first formulates the optimisation problem in the
classical Euler-Lagrange setting and computes the
gradient by backward integration of the result-
ing adjoint system. The second uses a Sequential
Quadratic Programming (SQP) method which
solves a Quadratic Programming (QP) subprob-
lem at each iteration. The study highlighted some
practical problems with applying the Euler La-
grange optimisation theory, in particular the sen-
sitivity of the approach to numerical errors when
integrating the adjoint system. The SQP method
on the other hand produced promising results,

both in terms of numerical accuracy, reliability
and computational cost.
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