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Abstract: The aim of this paper is to demonstrate dissolved oxygen and nitrate control in a 
wastewater treatment-plant, and an integrated wastewater system, using model predictive 
control. This control is of importance in maintaining the conditions required for aquatic 
organisms and so, the entire dynamics must be considered: the urban sewer system, water 
treatment plant, and river itself. The integrated system is highly nonlinear and therefore the 
control is implemented using multiple models. Using this method, nonlinear control is 
obtained based on local linearisations, which are scheduled using Takagi-Sugeno-Kang 
methods. Results demonstrate the advantages of predictive control in water treatment 
control. Copyright © 2005 IFAC 

 
Keywords: Predictive Control, Waste Treatment, Environmental Engineering, Nonlinear 
Control 
 
 

 
 

1. INTRODUCTION 
 
In the past, extensive research has been done to 
optimise the performance of wastewater systems by 
implementation of control based on wastewater 
treatment plant models. The focus in recent years has 
now moved towards the integrated water system itself, 
to include control of both the treatment plant and the 
receiving waters affected by it.  
 
Model Based Predictive Control (MBPC) can be used 
in the control and optimisation of the behaviour of a 
process, in the presence of constraints, by using models 
of the process to predict future behaviour. This is the 
requirement in control of integrated wastewater 
systems, which must be constrained to within 
governmental regulatory limits, and thus MBPC is an 
appropriate control methodology.  
 
This paper demonstrates the application of predictive 
control methods in two systems: the linear control of a 
wastewater treatment plant, and fuzzy-nonlinear control 
of an integrated wastewater system (consisting of a 

sewer network, a treatment plant, and the receiving 
waters).  
 
For the most part, there has been little work on control 
of the latter systems; the majority of research has 
concentrated on the treatment plant alone. A similar 
approach to that described here was developed by 
Marsili-Libelli et al.  (2002) and by Brdys et al.  (2002) 
where fuzzy predictive control was applied to the case 
of treatment plant system, without modelling the effect 
on the receiving waters.   
 
Predictive control methods are generally popular in 
industry in their linear form. This is due to the 
complexity of the nonlinear forms. In recent years, 
however, progress has been made in the use of linear 
predictive methods with fuzzy logic methods, as a form 
of nonlinear control. Skrjanc et al. (1994) developed a 
form of fuzzy predictive controller, using Takagi-
Sugeno (TS) models, with a GPC algorithm.  
 
A fuzzy predictive controller for MBPC was described 
by Roubos et al. (1999) using a TS model. A similar 



approach is used here, with a Takagi-Sugeno-Kang 
(TSK) model as described by Pinto et al. (2004). A 
methodology similar to that used here was presented in 
Sanchez et al. (2002), where the TSK algorithm with 
predictive control was implemented on an electric 
power plant. 
 
The structure of the paper is as follows: the 
methodology for both MBPC and for fuzzy gain 
scheduling is introduced, after which the application of 
both these methods is shown. Finally, the results are 
discussed, and conclusions are presented.  
 
 

2. MODEL BASED PREDICTIVE CONTROL 
 
Predictive control is one of the most widely used 
advanced forms of control used in industry. The reason 
for this is due to the fact that predictive control 
algorithms can easily be adjusted to allow constraint 
handling, that it allows for multivariable control 
without any extra complexity and that it can be 
intuitively tuned. Feedforward control is also easily 
accommodated, by using the model-based aspect of the 
control.  
 
The control method used was that presented by Krauss 
et al. (1994), a predictive controller based on a system 
model as follows, requiring the standard state vector 

, found by identification, to be augmented to 
include :   
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This form allows for the inclusion of measured 
disturbance , allowing the controller to take into 
account system inputs that are uncontrolled.  
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Further disturbance modelling by the inclusion of a 
constant disturbance state allows the controller to 
compensate for the plant-model mismatch and reject 
disturbances in the system, for example, changes in 
influent or river characteristics due to storm conditions, 
as shown in Maciejowski (2002). In Krauss et al. 
(1994), the equation for the predicted output is shown 
to be 
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The matrices F and H in the above prediction equation 
are found by iteration of the linear model over the 
controller prediction horizon, Hp, and are of the 
following form, where Hu is the control horizon: 
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The error, upon which the controller must act, is 
calculated using the estimated augmented states, the 

setpoint , and the input and measured disturbance 
 values: 
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It can be seen therefore that state estimation is required, 
and so a simple pole-placement estimator calculates the 
states. By optimisation of the process cost function 
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with respect to )(ku∆ , where  and Q λ are the error and 
control change weights respectively, the optimal control 
input )(ku∆  is found.  
 
In constraint handling, Maciejowski (2002) shows the 
method of implementing constraints defined by 
inequalities (on the input changes, the input range, and 
the output range, respectively): 
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These constraints are implemented during the cost 
function minimisation, as constraints on the 
optimisation problem. The control of parameters in the 
wastewater treatment plant requires only linear 
predictive control methods. However, with the addition 
of the river dynamics to the control objective, 
significant nonlinearity is introduced, requiring 
nonlinear control methodology. 
 
 

3. GAIN SCHEDULING USING FLC 
 
There are various methods of nonlinear control, which 
however have yet to become widely used in industry, 
due to the already widespread use of the linear form of 
MBPC, and the complexity of nonlinear methods. 
There is, however, a method that bridges the gap 
between the linear and nonlinear control methods. The 
use of multiple models for various operating points can 
allow the user the benefit of nonlinear control, without 
the added financial or time cost of implementing 
nonlinear MBPC.  
 
The method used here is called gain scheduling using 
Takagi-Sugeno-Kang Fuzzy Logic Control (TSKFLC), 
based on fuzzy theory proposed by Takagi et al. (1985). 
In this format an operating point can belong entirely to 
one set (one controller), or partially to two sets (two 
controllers weighted according to operating point). That 
is, the control is gain-scheduled, where the scheduling 
variable is that on which the choice of controllers is 
based (in this particular case study, the scheduling 
variable is , the input flow of the treatment plant). Q

 
For TSKFLC, the overall output of the composite 
controller (that is, the combined linear controllers) is 
the weighted mean of the outputs of each individual 
controller, according to the following form: 
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where u is the output of the composite controller, and ui 
are the individual outputs of each controller in the gain 
scheduler. The weighting vector wi is defined here as 
being within the bounds of 0 ≤ wi  ≤ 1and that the sum 
of the weights should be equal to 1.  
 
 

4. SIMULATION RESULTS 
 
The problem of controlling both oxygen and nitrate 
levels in a wastewater treatment system is considered in 
this paper. The initial system to be controlled is that 
presented in the COST 624 benchmark for the 
Activated Sludge Model (ASM) 1 model. This 
demonstrates that MBPC linear predictive control is 
possible for a treatment system, which consists of only 
the water treatment plant. ASM1 is a comprehensive 
model based on real data, and is widely used as a 
benchmark for control evaluation.  
 
However, it is also necessary to demonstrate predictive 
control on the integrated system, that is, including the 
sewer and the receiving waters, as well as the treatment 
plant. The majority of control research in the area of 
wastewater treatment has concentrated on the effluent 
from the plant, and meeting regulatory requirements at 
this point.  
 
The research now has begun to concentrate on the 
effect this effluent has on the receiving waters. To this 
end, a simple model of an urban wastewater system 
(UWS) is used for the controller implementation, for 
the latter case study. 
 
The aim therefore of first study was to control the 
nitrate and the oxygen to a specified setpoint. The 
control of these concentrations was investigated using 
multivariable predictive control. The control of the 
integrated wastewater system includes the gain 
scheduling methods with the application of Fuzzy 
Logic, in controlling the dissolved oxygen. 
 
 
4.1 Cost 624 Benchmark Control 
 
The COST 624 research group developed a benchmark 
model of wastewater treatment, using the ASM1 model 
developed by Henze et al. (Copp, 2002), in order to 
effectively compare different control strategies.  
 
 
 
 
 

Fig. 1. COST 624 benchmark system model, comprised 
of five tanks, settler and recycled internal flow 
 
Unless a general model is used for control design 
purposes, then the effectiveness of different controllers 
cannot be determined. The COST 624 benchmark plant 
model shown in Figure 1 is comprised of: 
 
• five biological tanks in series, each using the 

ASM1 model, the first two tanks are unaerated, and 
the other three are aerated (with air flow control on 
the final tank for dissolved oxygen, and optional 
plant flow control on the second tank for nitrate) 

• one non reactive secondary settler based on the 
settling function by Takacs et al. (1991) 

• two internal recycles, nitrate from 5th tank to 1st, 
and sludge from settler to front end of plant  

 
This system considers only the treatment plant 
dynamics, that is the influent into the plant is that of the 
average statistics for given rain events, but does not 
take into account any sewer dynamics. Similarly, the 
control implemented only considers the effluent, and 
not the effect downriver. The downriver effects are 
considered in Section 4.2  
 
The system as presented in Copp (2002) uses low level 
control in the form of PID control, on the DO 
(dissolved oxygen) levels of the 5th tank, and nitrate 
levels in the 2nd tank. The control aim therefore is to 
improve on this, by implementing predictive control 
around these PID loops, thereby feeding a variable 
setpoint to them.  
 
For this MBPC format used here a linear state space 
model is required, which is found by implementation of 
Subspace Identification, developed by Van Overschee 
et al. (1996).  Implementing the linear MBPC methods, 
the system is run to control a DO setpoint of 2gm-3, and 
the nitrate level is controlled to a setpoint of 1gm-3. 
Tuning of the controller is done by trial-and-error, 
adjusting the cost function weightings according to the 
required response.  
 
It can be seen that for the dissolved oxygen levels, the 
predictive control (dotted line) response is considerably 
better than that of the original PID control (full line).  
For the nitrate, the improvement is even more obvious. 
The reason for this is the fact that the predictive 
controller is a cascaded controller, around the inner PID 
loop, and therefore can vary the setpoint of the inner 
loop, avoiding the error due to tuning. 
 
 



 
 Fig. 2. a) Predictive (cascaded around PID) control 

(dotted line) vs. PID control only 
 
In constraint handling, the system demonstrates the 
above response for the output constraint of 2.5gm-3, 
Figure 3 shows the unconstrained and constrained case 
respectively for a setpoint step of 0.75gm-3 to 2.5gm-3 
for dissolved oxygen.  It can be seen by Figure 3 that 
the constraints are implemented on the output 
functions, though they operate strictly. 
  
 
4.2 Gain Scheduling for Integrated UWS 
 
The system considered as an integrated urban waste 
water system consists of a sewer network model, a 
treatment plant model, and the model of the receiving 
waters (which in this case is a river model). The input 
to the sewer network is that of the influent from the 
catchment areas, which consist of human urban 
wastewater, and other influents from runoff. 
 
It can be seen from figure 4, that the sewer network 
affects the receiving waters in two ways, the first being 
the effects of the effluent of the sewer network, which 
is in turn the influent to the treatment plant. It also 
affects the receiving waters through overflows. In storm 
conditions, overflows occur in the sewer network, 
causing fluctuations of the fractions (such as dissolved 
oxygen) in the river. 
 
The control objective here is to show the possibility of 
control of the quality of the receiving water using the 
treatment plant effluent dynamics. Research has been 
done by Cembrano et al. (2004) in the use of MBPC in 
reducing overflows, so this paper does not consider this 
area. 
 

  
Fig. 2 b) Predictive Nitrate Control cascaded around 

PID (dotted line) vs. PID only 
 

 

     
Fig. 3.  dotted line: unconstrained case, full line: 

constrained case (for constraint of 2.5gm-3  for DO)  
 
As shown in section 3, the gain scheduling 
implemented on this system was Takagi-Sugeno Fuzzy 
Logic Control. This was implemented for the integrated 
model shown in Figure 4. The subspace identification 
algorithm used previously in identification of the 
treatment plant model is used again in this case to also 
obtain a multivariable model. This model however is of 
the form of a measured disturbance, as the model input 
of upstream river dynamics is not controllable here. 
There is also the difference here that the predictive 
controller, whilst still applying a variable setpoint to a 
PID, does not cascade around this PID loop, but around 
the entire system.   
 
There exists only one controlled input, the setpoint of 
the dissolved oxygen levels in the treatment plant. Due 
to this, and the fact that there are three models, for low 
flow, medium flow and high flow, there are three fuzzy 
rules for the model of the Nonlinear Predictive 
Controller using a T-S-K model.  The structure of the 
Nonlinear Predictive Controller is shown in the Figure 
5.    The formula that describes the Nonlinear Predictive 
Controller output u is: 

 
332211 CwCwCwu ∗+∗+∗=      (8) 

 
where the degree of memberships (weighting) is 
represented by w1, w2 and w3, and the individual control 
signals are represented by C1, C2 and C3, (i.e. the 
outputs of the local linear predictive controllers). The 
scheduling variable, that is the variable upon which the 
ranges are based, is the input flow to the treatment 
plant, . By choosing three models that cover a range 
from 0 to 12,000m

Q
3 of flow, then the nonlinear control 

should take into account both the normal flow (in the 
region of 1000m3) and the storm weather flow (the 
maximum 12,000m3).  
 

 
Fig. 4 Integrated Urban Wastewater System consisting  

of sewer network, treatment plant and receiving 
waters (usually river) 



 

 
Fig. 5. Fuzzy Predictive Controller, with multiple 

model predictive controllers, weighted using the 
FLC function as described by Figure 6. 

 
The membership functions are therefore defined as 
shown here in equation 9, and subject to the constraints 
defined by inequalities: 
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(9) 
 

The T-S-K model allows for operating ranges to be 
defined for each linear predictive controller in order to 
cover the nonlinear operating range of the system.  The 
operation range was divided in the form shown in 
Figure 6, using triangular and trapezoidal membership 
functions, chosen due to their characteristic of having a 
unity weighting sum. 
 
To demonstrate the improvement resulting from the use 
of a Gain-Scheduled MBPC, the following tests were 
run on the system. Firstly, as in figure 7, the fuzzy 
controller was tested at a step flow from 4000m3 to a 
flow of 9000m3, for which the setpoint to be reached in 
the river was a value of 8.2gm-3. Both systems were 
tuned in order that their maximum values would reach 
the setpoint. The linear controller was tuned for the 
flow range of 5000m3 to 7000m3. 
 
The fuzzy controller is tuned to reach a given setpoint 
for all flow ranges, and any flow change results only in 
a minor transient dip in dissolved oxygen levels. In 
comparison, it can be seen that the response for a single 
linear predictive controller, without gain scheduling, is 
erroneous at both flows and has a considerably larger 
transient dip during the flow change.  
 

 
Fig. 6. The definition of the FLC membership functions 
according to the range of Flow, Q 

 
Fig 7.   Fuzzy Gain Scheduled Control, FLC (full line) 

vs. linear MBPC (large dotted line), with respect to 
setpoint (small dotted line) 

 
There is, therefore, an improvement in the response of 
an integrated wastewater system when a sudden flow 
change is applied. This is significant, as the most likely 
significant change in the system would be an increase 
in flow, due to storm weather. Using a nonlinear 
controller, such as a gain scheduler, allows for the 
system to react to such a transient.  
 
In summary, the output constraints demonstrated in 
Figure 3 show the significant advantage of using 
MBPC. Lower control methods, such as PID control, do 
not allow for constraint handling. The responses in 
Figure 2 also show the distinct improvement of MBPC 
over PID in terms of setpoint tracking. This is because 
the PID controller does not allow for intuitive tuning of 
multivariable controllers. Figure 7 demonstrates the 
advantage of using a gain-scheduled controller for the 
more nonlinear integrated system. 
 

 
5. CONCLUSION AND DISCUSSION 

 
The majority of control approaches until recently have 
been focussed on control of the treatment plant. 
However, the more realistic approach is to focus instead 
on the effect of the effluent on the river, and to use this 
knowledge to attempt to control the river dynamics. 
Thus the effect of overflows on dissolved oxygen, and 
nutrients could be negated by the control of the WWTP 
effluent with respect to river dynamics.  
 
The predictive control method used in this paper was 
outlined in Section 2. It is seen by Section 3 that it is 
possible to develop nonlinear predictive control using 
linear methods with fuzzy gain scheduling. The control 
implemented in Section 4 demonstrates: the ability to 
control a waste water treatment plant for dissolved 
oxygen and nitrate levels, and also the control of an 
integrated urban wastewater system by the use of gain-
scheduled MBPC. The latter was implemented for 
dissolved oxygen.  
 
The research in this paper presents the control of 
wastewater systems with the use of MBPC, and 
demonstrates how even nonlinear wastewater systems 
are controllable with linear techniques, with the use of 
gain-scheduled control.  
 



Further work could be done to implement this control 
for nutrients such as nitrates or phosphates, therefore 
requiring more complex nonlinear predictive control 
methods, as well as progression to the use of a more 
complicated integrated system model.  
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