
AIRES: A STANDARD FOR WEB-BASED
REMOTE EXPERIMENTS

Marco Casini ∗ Alberto Leva ∗∗ Francesco Schiavo ∗∗

∗ Dipartimento di Ingegneria dell’Informazione,
Università di Siena, Via Roma 56, 53100 Siena, Italy

Email: casini@ing.unisi.it
∗∗ Dipartimento di Elettronica e Informazione,

Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
Email: {leva,schiavo}@elet.polimi.it

Abstract: This paper proposes a standard for the communication between a remote
laboratory and the clients willing to use that laboratory. The ultimate goal of the
research is to allow anyone to use any experiment, without the need to use the
specific interface provided by the laboratory site that offers each experiment. The
authors strongly believe that adopting such a standard would greatly enhance
the effectiveness of remote experiments. The study presented herein is (of course)
preliminary, and another purpose of this paper is to promote and stimulate further
research on the matter. Copyright c©2005 IFAC

Keywords: Control education, distance learning, web-based learning, remote
laboratory.

1. INTRODUCTION AND PROBLEM
STATEMENT

Dozens of remote experiments are nowadays avail-
able on the web, see e.g. (Poindexter and Heck,
1999; Dormido Bencomo, 2004; Gasperini et al.,
2004) and many other works. To use them, how-
ever, one has to employ (and therefore to learn)
the operator interface provided by the site that
hosts the experiment (termed from now on the
‘Experiment Server’ or ES). In addition, in the
great majority of cases the remote user is only
allowed to change some parameters in control
schemes that are already implemented in the ES,
and there is no possibility to specify one’s own
schemes. Finally, there is no uniform way to bring
the experiment data from the ES to the loca-

tion whence it is employed by the user (termed
herein the ‘Experiment Client’ or EC). All these
facts, with various degree of relative importance
depending on the particular situation and user
type, diminish the usefulness of most remote ex-
periments.

This paper firstly aims at raising the problem
sketched above, in the hope that the scientific
community will undertake the challenge to solve
it. In addition, a preliminary proposal for the defi-
nition of a suitable standard (AIRES, standing for
Architecture Independent Remote Experiments
Standard) is formulated, some solutions designed
in accordance to that proposal are described, and
finally some application examples are briefly re-
ported.



AIRES SERVER

COMPILER

BLOCKS
PLANTS

CONFIGURATION FILE

Experiment
request

VALIDATION

Configuration
request

EXPERIMENT MANAGER

PLANTS
and/or

SIMULATORS

AIRES
CLIENT

Fig. 1. Scheme of the AIRES architecture.

To state the problem addressed by AIRES, as-
sume that several ESs exist in the net, each of
them composed of a computer accessible via the
web and some simulated or physical experiments.
Details on the ES architecture are inessential at
this stage. The purpose of the AIRES project is
to allow any potential EC (that is, any computer
connected to the Internet) to query an ES to know
which experiments are available, design a control
scheme for one of those experiments, perform an
experiment with that control scheme, and retrieve
the generated data, without the need to learn any
specific user interface and without the necessity of
any software other than a browser.

The EC must not be constrained to use any spe-
cific editor (in the broadest sense of the term) to
build control schemes, and any detail concerning
both the ES and the EC architecture, operating
system, and so forth must be absolutely transpar-
ent for the user.

2. ARCHITECTURAL OVERVIEW OF AIRES

Any communication in AIRES is textual and file-
based, and is centered on two formats. The first
one is the AIRES Server Configuration file (ASC),
an ASCII file that any ES publishes on the web,
which describes the available experiments and
the blocks that can be used to compose control
schemes. The second one is the AIRES Client Ex-
periment Request file (ACER), that is uploaded
by an EC to an ES to require that an experiment
be run. In this paper we only refer to batch ex-
periments, though AIRES can be extended to in-
teractive ones without excessive difficulties. Some
remarks in this respect are given in Section 4). The
AIRES architecture is summarized in Figure 1.

An AIRES ES is defined, from the standpoint of
the EC, by its configuration file. Space reasons
oblige in this paper to illustrate the matter per
exemplum. Therefore, a typical ASC file is re-
ported and briefly commented in the following.
The example defines some blocks and one plant,
namely the simple temperature control presented
in (Leva, 2002) and shown in Figure 2, in which
the two transistors heat a small metal plate while
the fan provides cooling. The outputs are the
measurements of the temperatures of the transis-

Fig. 2. The thermal apparatus referred to in the
ESSC file example.

tors and of the plate, while the inputs are the
commands to the transistors and to the fan.

{GENERAL

(SITE AIRESexample)

(URL http://...)

(DESCRIPTION brief example of AIRES ES

configuration)

}

{BLOCKS

(ISAPID2dof

(DESCRIPTION 2-d.o.f. ISA PID)

(INPUTS

(SP , real, req, Set point)

(PV , real, req, Process Variable)

(TS , bool, def, F, Track Switch)

(TR , real, def, 0, Track Reference)

(NoUp, bool, def, F, CS increment lock)

(NoDn, bool, def, F, CS decrement lock)

)

(OUTPUTS

(CS , real, Set point)

(HIsat, bool, High Sat. Signal)

(LOsat, bool, Low Sat. Signal)

)

(PARAMETERS

(K , real Gain)

(Ti, real Integral time)

(Td, real Derivative time)

(N , real ratio between Td and the 2nd

pole time constant)

(b , real SP weight in the P action)

(c , real SP weight in the D action)

)

) // end ISAPID2dof

(STEPGEN

(DESCRIPTION Step generator

(OUTPUTS

(Out, real, Output signal)

)

(PARAMETERS

(Vini, real, Initial value)

(Vfin, real, Final value)

(Tstep, real, Step time)

)

) // end STEPGEN

// other blocks (e.g. transfer function, sum,

// product, logic elements, nonlinear

// functions, and so on)

} // end BLOCKS section

{PLANTS



(MultiVarTC

(DESCRIPTION Multivariable thermal apparatus

described in A. Leva, "A Hands-on Experimental

Laboratory for Undergraduate Courses in

Automatic Control", IEEE Transactions on

Education, 46(2), 2003, 263-272)

(MINTIMESTEP 0.05 s)

(MAXTIMESTEP 2 s)

(MAXDURATION 1200 s)

(INPUTS

(Q1, real,Unit,0,100,Command to transistor 1)

(Q2, real,Unit,0,100,Command to transistor 2)

(Qf, bool, , , , On-off command to the fan)

)

(OUTPUTS

(T1, real, ◦C, Temperature of transistor 1)

(T2, real, ◦C, Temperature of transistor 2)

(Tp, real, ◦C, Temperature of metal plate)

)

) // end MultiVarTC

} // end PLANTS section

The GENERAL section contains information about
the laboratory name and web address. The BLOCKS
section contains all data regarding the imple-
mented blocks. For each block, inputs, outputs
and parameters are described, along with their
names, descriptions and types. Moreover, an input
flagged as req must be connected and has no
default, while other inputs may stay unconnected
and assume in that case the value given after
the def keyword (similar consideration can be
done regarding a parameter). The PLANTS sec-
tion describes the processes available for on-line
control; the I/O signals are described along with
their physical meaning, and the upper and lower
bounds are reported for the plant inputs. In ad-
dition to inform a user about which blocks can
be used for designing an experiment, in the near
future this file should be used as input for a graph-
ical interface (GUI) which helps the user in design-
ing an experiment by connecting some graphical
blocks. In fact, it is the authors’ intention to
develop a GUI which allows a user to design an
experiment by using the blocks provided by the
server. It is worthwhile to note that such a GUI,
which will be implemented as a Java applet, could
be used by any laboratory which joins the AIRES
standard. Moreover, anyone could implement his
own interface and share it with other remote labs.

To require an experiment, an EC uploads to the
ES an ACER file. Also in this case, for space
reasons, we show the structure of that file by
means of an example. The example refers to the
control scheme of Figure 3, concerning the already
quoted multivariable thermal apparatus.

{GENERAL

(EXPERIMENT AnExample)

(DESCRIPTION cascade control experiment in which

transistor 1 is used to control the temperature

of transistor 2, having that or transistor 1 as

the controlled variable of the inner loop)

PIDI

Plant

Q1

SP T1

T2

Qf

Q2
T1

SP T2

PIDE

Tp

Fig. 3. Cascade control system.

(PLANT MultiVarTC)

(TIMESTEP 0.5)

(DURATION 360)

}

{DEFINE

(Kext=2) (Kint=20)

}

{BLOCKS

(PIDext ISAPID2dof

(K, Kext) (Ti, 30) (Td, 0) (N, 1)(b, 1) (c, 0)

)

(PIDint ISAPID2dof

(K, Kint) (Ti, 20) (Td, 0) (N, 1)(b, 1) (c, 0)

)

(SetPointT2 STEPGEN

(Vini, 30) (Vfin, 35) (Tstep, 120)

)

(LoadDistQ2 STEPGEN

(Vini, 0) (Vfin, 25) (Tstep, 240)

)

} // end BLOCKS section

{CONNECTIONS

(SetPointT2.Out, PIDext.SP) // Outer PID

(Plant.T2, PIDext.PV)

(PIDext.CS, PIDint.SP) // Inner PID

(SubI.Out, Plant.Q1)

(LoadDistQ2.Out, Plant.Q2) // Load dist.

(PIDint.HIsat, PIDext.NoUp) // Interloop

(PIDint.LOsat, PIDext.NoDn) // antiwindup

} // end CONNECTIONS section

{RECORD

(SetPointT2.Out, Set point for T2)

(LoadDistQ2.Out, Load disturbance (Q2))

(Plant.T1, temperature of transistor 1)

(Plant.T2, temperature of transistor 2)

(Plant.Tp, temperature of the plate)

(Plant.Q1, Command to transistor 1)

(Plant.Q2, Command to transistor 2)

} // end RECORD section

The GENERAL section contains some general infor-
mation such as the name, the duration and the
time step of the experiment. The DEFINE section
allows a user to define some variables and to use
them as values of a block parameter. The BLOCKS
section contains all the used block; for each block
one has to specify the type of the block and the
parameters values. The CONNECTIONS section re-
ports all the signal connections between a source
block and one or more destination blocks. In par-
ticular it is needed to indicate which I/O ports
are involved in the connection. Such ports can be
referred to by the port number or the port name.
Finally, the RECORD section contains all the signals
that have to be stored for downloading along with
the name they will be referred to. This data will



be stored in a text file with fields delimited by
tabulations. Time values are automatically stored
by default.

3. OPERATION OF AIRES

The typical complete cycle of an AIRES exper-
iment can be summarized as follows. First, an
EC finds an ES hosting the desired experiment
(possible ways to aid such a search are outside the
scope of this paper) and downloads its ASC file.
Then, the user generates the ACER file for the
desired experiment. This can be done manually,
i.e., writing the file with any ASCII editor, or by
means of specialized software allowing to do the
job with a graphical interface. A very interesting
side product of AIRES would be the possibility
for everyone to write his/her own graphical appli-
cation to build control schemes: as long as that
application adheres to the standard, importing
an ASC file could easily populate the necessary
palettes with the blocks that can be used to spec-
ify a control scheme suitable for the ES providing
the ASC file. This would allow anybody to use
any remote experiment with his/her own control
scheme editor, and the advantages are apparent.

Once the ACER file is prepared, the EC uploads it
to the ES (possibly after an authentication process
that may be subject to an accounting mechanism,
two other useful features that are outside the
scope of this work).

When the ES receives the ACER file, it has to
compile that file into an executable for its own
architecture. This part of the ES, termed the
AIRES Compiler (AC), is the only one that has
to do with a specific architecture. In fact, the core
of the construction of an ES is the implementa-
tion of an AC on the architecture at hand. This
implementation has to encapsulate the particular
architecture from the point of view of the EC, and
of course there is no possible standard for the AC
implementation if viewed from the ES architecture
side, exactly as there is no standard when imple-
menting the software driver for a hardware device,
from the hardware side. The present state of the
research on AIRES indicates, however, that the
AC implementation is possible on very different
ES architectures. For example, at the moment two
such implementations are being carried out: one
uses a Matlab-based architecture, and translates
the ACER into a Simulink diagram and some
runtime information, the other is based on Lab-
VIEW, and translates the ACER into a sequence
of subprocedure calls accessing a shared memory.
Although no completely general statement is pos-
sible, then, it appears that an AC can be imple-
mented on virtually any architecture an ES may

be based upon (note that the two quoted ones,
that are being at present addressed, are completely
different). All the validation tasks to be performed
on an ACER file pertain of course to the AC, that
has to produce the necessary diagnostics when
required. The choice of maintaining the control
scheme and the experiment parameters together
in the ACER file has been made basically for clar-
ity, as there are no references that may be broken
and every experiment is completely defined in one
file. This causes a very small overhead for the ES
and is perfectly acceptable.

Once the ACER is compiled into an executable,
the experiment can be performed immediately or
put in a queue. The first choice is highly ad-
visable in the case of an interactive experiment,
but apparently requires some reservation mech-
anism, or similar feature, to manage concurrent
requests. The second is the natural choice for
batch experiments, and since AIRES is at a pre-
liminary stage, this is where research efforts are
now concentrated. At the end of the experiment,
data can be made available for download or e-
mailed to a specified account. Note that, due to
its generality, the use of AIRES does not limit
users to perform control systems experiments in
the strict sense of the term, but allows for many
other kinds of experimental activity as well. For
instance, experiments can easily be designed and
performed to gather data aimed at off-line system
identification.

The advantages yielded by AIRES are numer-
ous. Apart from those already mentioned, the
“physical control system encapsulation” realized
by the standard allows to perform the same ex-
periment on different architectures, to specify the
same control strategy and have it implemented
and tested on different systems, and so on. In
one word, AIRES is (also) a way to expose the
users to all the problems that arise when using
control specification tools (e.g., CACSD software)
that conceal, at the design stage, most details
on the actual control system implementation. Be-
coming aware of that matter is very important in
control education, see e.g. (Amadi-Echendu and
Higham, 1997; Bialkowski, 2000; EnTech, 1994),
and being exposed to those problems is a partic-
ularly useful form of “realism”.

4. EXTENSIONS

Since the main scope of AIRES is to create a stan-
dard which is able to encapsulate the simulation
architecture of any remote lab, some extensions to
the ASC and ACER files will become necessary in
the future to satisfy some server requests. Some



of these have already been found and solved. For
example, by adding a special field in the parame-
ter definition of a block will allow the parameter
to perform special functions, such as to be tuned
on-line during the experiment.

Once developed the needed extensions, an exper-
iment server could use AIRES in various contexts
and functionalities. Some examples are reported
below.

• Real and virtual laboratories.
• Batch and interactive experiments.
• On-line tunable parameters.
• On-line signal plots.

Since one key feature of AIRES is to standardize
the definition of a controller scheme and of the
data obtained during the experiment, the use of
the AIRES do not exclude the use of other addi-
tional features (e.g. features already developed in
the remote lab), such as those reported below.

• Visual feedback through a live camera.
• On-line animation of the experiments in
VRML.

• Download data in special formats (e.g. Mat-
lab or LabVIEW formats), though preserving
the ASCII format anyway.

Of course, since AIRES does not require any ad-
ditional feature other than a standard browser, it
will be a server task to inform users about the re-
quired specification in order to run an experiment
with extra features (for example, the client must
be informed whether it would be useful or not to
have a Java Virtual Machine locally installed).

5. EXPERIMENT EXAMPLE

In this section, an example of a control experi-
ment is provided. The experiment concerns the
control of the water level in a tank (see Fig-
ure 4) which is physically located at the Uni-
versity of Siena. This and other experiments can
be accessed through the Automatic Control Tele-
lab (ACT), a remote laboratory which allows
users to design and test remote controllers on
real plants (Casini et al., 2004). Although the
ACT was born to work with the Matlab/Simulink
environment (i.e. a controller had to necessary
be a Simulink model), it has been recently im-
proved in order to join the AIRES standard, too.
The AIRES version of the ACT can be found in
http://act.dii.unisi.it/aires. For the mo-
ment, experiments can be run in batch mode (on-
line camera is provided), but work is in progress
also to allow user interaction.

Let us assume to design a feedback control exper-
iment as reported in Figure 5, where the block

Fig. 4. The tank process for water level control.

C(s) PReference Command

Output

Fig. 5. Scheme of the control experiment reported
in the example.

P denotes the physical plant (i.e. the tank), the
reference signal is a step, and the controller to use
is

C(s) =
50 s2 + 55 s+ 5

s2 + 10 s
.

Moreover, let us assume that we want to record
the reference, the command and the output sig-
nals. The experiment stop time is assumed to
be 150 seconds while the time step is set to 0.1
seconds.

The ACER file describing this experiment request
is as follows (the ASC file is not reported for lack
of space).

{GENERAL

(EXPERIMENT LevelExperiment)

(DESCRIPTION simple transfer-function

feedback controller)

(TIMESTEP 0.1)

(DURATION 150)

} // end GENERAL section

{BLOCKS

(reference : step

(vi, 0)

(vf, 1)

(tstep, 10)

)

(sum : sum

(signs, "+-")

)



Fig. 6. Reference/Output plot of the water tank
experiment.

(controller : tf

(num, [50 55 5])

(den, [1 0 10])

)

} // end BLOCKS section

{CONNECTIONS

(reference.1, sum.1)

(sum.1, controller.1)

(controller.1, system.1)

(system.1, sum.2)

} // end CONNECTIONS section

{RECORD

(system.1, Output)

(controller.1, Command)

(reference.1, Reference)

} // end RECORD section

Once the file is sent to the server, it is compiled
and the experiment is started. At the end of the
experiment it is possible to download data in
the AIRES format, i.e. as a text file whose fields
are delimited by tabulations. These data can be
used to perform off-line analysis or to plot the
signals dynamics as reported in Figure 6 where
the reference and output signals obtained in this
experiment are shown.

6. CONCLUSIONS

This paper has attempted to draw the reader’s
attention onto the necessity of agreeing a standard
for the remote operation of laboratory experi-
ments. This would allow anybody connected to
the net to use any experiment that conforms to
the standard, without the necessity of employing
specific software. After discussing some general
aspects, the AIRES standard has been presented.

The proposal of AIRES is of course preliminary,
and not only because the scope of this paper has
been limited to batch experiments. For example,
with simple (and only morphological) modifica-
tions, AIRES could adopt the XML format, as
suggested in (Pastor et al., 2003), or be com-

plemented with menu driven interfaces to ease
the use on the part of students. This may make
its textual files less readable for the human, but
would also allow to use a number of standard tools
for their manipulation.

At present, research is underway to implement two
AIRES servers adopting very different experiment
architectures, and to build a “lightweight” and
cross-platform editor capable of importing AIRES
configuration files and generating AIRES experi-
ment requests. In detail, a Matlab-based AIRES
server is already available at the Automatic Con-
trol Telelab of the University of Siena, while a
LabVIEW-based AIRES server is being set up at
the Cremona site of the Politecnico di Milano.

REFERENCES

Amadi-Echendu, J.E. and E.H. Higham (1997).
Curriculum development and training in
process measurements and control engineer-
ing. Engineering Science and Education Jour-
nal 1997(June), 104–108.

Bialkowski, W.L. (2000). Control of the pulp and
paper making process. In: Control system
applications (S. Levine, Ed.). pp. 43–66. CRC
Press. Boca Raton, FL.

Casini, M., D. Prattichizzo and A. Vicino (2004).
The Automatic Control Telelab. A web based
technology for distance learning. IEEE Con-
trol Systems Magazine 24(3), 36–44.

Dormido Bencomo, S. (2004). Control learning:
present and future (plenary lecture). In: Proc.
IFAC World Congress b’02. Barcelona, Spain.
pp. 81–103.

EnTech (1994). Competency in process control—
industry guidelines, version 1.0.

Gasperini, D., F. Schiavo, W. Spinelli, C. Veber
and A. Leva (2004). A set of hardware and
software tools for control education. In: Proc.
2nd IFAC Workshop on Internet Based Con-
trol Education IBCE’04. Grenoble, France.

Leva, A. (2002). A hands-on experimental lab-
oratory for undergraduate courses in auto-
matic control. IEEE Transactions on Educa-
tion 46(2), 263–272.

Pastor, R., J. Sánchez and S. Dormido (2003). A
XML-based framework for the development
of web-based laboratories focused on control
systems education. International Journal of
Engineering Education 19(3), 445–454.

Poindexter, S. E. and B. S. Heck (1999). Using
the web in your courses: what can you do?
what should you do?. IEEE Control Systems
Magazine 19(1), 83–92.


