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Abstract: In a recent paper the authors proposed a classification of nonlinear RLC circuits
into “dominantly inductive” or “dominantly capacitive” depending on an order relation
between stored magnetic and electric energies that, in the linear case, exactly leads to
the classical definitions based on reactive power. Associated to each of the classes is a
suitably defined passive map with corresponding supply rate functions, that we interpret
as generalized reactive power. In this paper we further investigate the properties of these
functions deriving a very simple, and physically interpretable, expression for their rate of
change and a procedure for its regulation with external sources. Copyright c©2005 IFAC
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1. PRELIMINARIES

1.1 Class of RLC circuits

In this note we consider RLC circuits consisting of
interconnections of (possibly nonlinear) lumped dy-
namic (inductors, capacitors) and static (resistors and
voltage and current sources) elements, whose behav-
ior is described as follows. An nL–port inductor is
defined by a vector function relating flux and current
pL = p̂L(iL), with p̂L : R

nL → R
nL , and Faraday’s

law

vL = ṗL = L(iL)
diL

dt
, (1)

? This work has been partially supported by CONACYT (Mexico),
the European sponsored project GeoPlex IST-2001-34166, for more
information see http://www.geoplex.cc

where we defined the inductance matrix L(iL) :=
∇p̂L. 1 Analogously, for nC–port capacitors we have
that the charges are related to the voltages as qC =
q̂C(vC), with q̂C : RnC → R

nC , and

iC = q̇C = C(vC)
dvC

dt
, (2)

where C(vC) := ∇q̂C . We also have the following
relationships for the energy functions EL(pL), EC(qC),
where EL : RnL → R, EC : RnC → R,

iL = ∇EL, vC = ∇EC . (3)

The circuit has nR resistors, which are 1–ports char-
acterized by the functions vkR = v̂kR(ikR), k =
1, . . . , nR, if they are current–controlled or by the

1 We use ∇x(·) := ∂
∂x

, when clear from the context the argument
will be omitted.



Fig. 1. RLC network with port variables the regulated
current or voltage sources.

functions ikR = îkR(vkR) if they are voltage–
controlled, where v̂kR, îkR : R → R, (see Fact 1
below). It is clear that constant voltage and current
sources can be easily added as particular instances of
resistors. The circuit is interconnected with the en-
vironment through nvS regulated voltage sources (in
series with inductors) or niS regulated current sources
(in parallel with capacitors). We denote their voltages
and currents as vvS , ivS ∈ R

nvS , and viS , iiS ∈ R
niS ,

respectively. See Fig. 1.

To simplify the notation, we will group all capaci-
tors of the circuit into one nC–port and all induc-
tors into one nL–port with corresponding energies
the sum of the energies of all multi–port capacitors
and inductors, respectively. Also, we will sometimes
group all port variables into vectors denoted by v :=
col(vC ,vL,vR,vS), i := col(iC , iL, iR,−iS), where
we have adopted the standard sign convention for the
sources currents.

We make the following assumptions:

A.1 The energy functions, EL(pL), EC(qC), are
twice differentiable and strictly convex—which im-
plies that inductors and capacitors are passive and,
furthermore, L(iL) > 0 and C(vC) > 0.

A.2 The characteristic functions of all resistors, vkR =
v̂kR(ikR), ikR = îkR(vkR), live in the first–third
quadrant, which is tantamount to saying that the
resistors are passive.

A.3 The circuit is complete, which means that the
currents in the inductors and the voltages in the
capacitors, via Kirchhoff’s laws and the laws of the
resistors characteristics, determine the voltages and
currents in all the branches.

Fact 1. (Brayton and Moser, 1964) Complete RLC
circuits can be split into two subnetworksΣL,ΣC that,
respectively, contain all the inductors and capacitors.
According to this partition, we can split the resistors
into two sets,

– nvR voltage–controlled resistors belonging to
ΣC , whose port variables will be denoted by
(iRC

,vRC
), and have characteristic functions

ikRC
= îkRC

(vkRC
); and

– niR current–controlled resistors belonging to
ΣL, with port variables (iRL

,vRL
) and charac-

teristic functions vkRL
= v̂kRL

(ikRL
). /

As shown in (Brayton and Moser, 1964), see also
(Ortega et al., 2003) for an alternative derivation in-
cluding the sources, the dynamics of the circuit is
described by

L(iL)
_̇

iL = −∇iL
P +BvSvvS

C(vC)v̇C = ∇vC
P +BiSiiS

(4)

where

P (iL,vC) := i>LΓvC +G(ΓLiL)− F (ΓCvC) (5)

is the mixed potential function, 2

F (vRC
):=

nvR
∑

k=1

vkRC
∫

0

îkRC
(v′kRC

)dv′kRC
, vRC

:= ΓCvC

G(iRL
):=

niR
∑

k=1

ikRL
∫

0

v̂kRL
(i′kRL

)di′kRL
, iRL

:= ΓLiL (6)

are the co–content and the content of the voltage–
controlled and the current–controlled resistors, respec-
tively, BvS ∈ R

nL×nvS , BiS ∈ R
nC×niS are in-

put (full rank) matrices, and Γ ∈ R
nL×nC , ΓC ∈

R
nRC

×nC , ΓL ∈ R
nRL

×nL are constant matrices
determined by the circuit topology.

Before closing this subsection we recall the classical
definition of passivity (Willems, 1992; Van der Schaft,
2000) and a well–known consequence of it.

Definition 1. (Passivity). We say that an m–port sys-
tem with state x = col(x1, . . . , xn) ∈ R

n and port
variables (u,y) ∈ R

m×R
m, is passive if there exists

a non–negative function E : R
n → R+, called the

storage function, such that

E [x(t)]− E [x(0)] ≤
t

∫

0

u>(s)y(s)ds, (7)

along all trajectories of the system. 3 The function
w : R

m × R
m → R, defined as w(u,y) := u>y,

is called the supply rate.

The following fact will be important to justify our
definition of generalized reactive power introduced in
Section 2, see also (Willems, 1992; Van der Schaft,
2000).

Fact 2. In physical systems the port variables, (u,y),
are conjugated—in the sense that their product has
units of power—and the function E(x) is the total
stored energy. On the other hand, since E(x) is non–
negative, the passivity inequality (7) implies

2 For a description of the class of nonlinear RLC networks that
enable an explicit expression for the mixed potential function (5),
we refer the reader to (Weiss et al., 1998)
3 In the seminal paper (Willems, 1992) a system satisfying con-
dition (7) is said to be dissipative with respect to the supply rate
w(u,y). The use of the word “dissipative” in this context may
generate some confusion, we therefore prefer to avoid its utilization
here.



−
t

∫

0

u>(s)y(s)ds ≤ E [x(0)]

where we underscore the negative sign. This inequal-
ity indicates that from a passive system you can only
extract a finite amount of energy, that cannot exceed
the energy initially stored in the system.

1.2 A passivity–based classification

The basic postulate of (Garcia–Canseco et al., 2004) is
that the (inductive or capacitive) nature of a nonlinear
circuit should be determined, as it is in the linear case,
by the order relationship between the stored electric
and magnetic energies. Indeed, for single port LTI
RLC circuits with sinusoidal voltage source, vS =√
2VS cos(ωt) and current iS =

√
2IS cos(ωt + φ)

we have established in (Garcia–Canseco and Ortega,
2004) that

Qω = 2ω[ELav
(ω)− ECav

(ω)], (8)

where Qω is the classical reactive power 4 defined as
Qω = VSIS sinφ, and ELav

(ω), ECav
(ω) are the aver-

aged energies. (Equation (8) indicates that the circuit
is inductive (resp., capacitive) if and only if the aver-
age magnetic energy dominates (resp., is dominated
by) the average electric energy—this, in its turn, is
equivalent to the reactive power being non–positive
(resp., non–negative) for all ω ∈ R.)

The result above is easily proven with simple fre-
quency response arguments. To extend our postulate
to the nonlinear case it is clear that we cannot rely
on sinusoidal steady state reasoning and we should
look for a more general framework, which turns out
to be the provided by the passivity formalism. For the
LTI case we have shown in (Garcia–Canseco and Or-
tega, 2004) that there exists a one–to–one correspon-
dence between passivity of some (suitably defined)
maps and reactive power, namely

(v̇S , iS) is passive ⇔ Qw < 0

(
_̇

iS , vS) is passive ⇔ Qw > 0. (9)

An extension to the nonlinear case was given in
(Garcia–Canseco et al., 2004) where, for the gen-
eral nonlinear circuit of Fig. 1 with constant current
sources iiS , it was proven that

EL(pL) >> EC(qC) ⇒ (vvS ,
_̇

ivS) is passive

Dually, if the voltage sources vvS are constant, we
have

EC(qC) >> EL(pL) ⇒ (iiS , v̇iS) is passive.

Comparing with (8), (9) we notice that the sharp
inequality and the equivalence have been replaced by
>> (resp. <<) and sufficiency only.

4 We use the subindex ω to underscore the dependence of the
reactive power on the frequency of operation.

2. RATE OF CHANGE OF GENERALIZED
REACTIVE POWER

The discussion above highlights the importance of the
functions

−
t

∫

0

v>vS(τ)
_̇

ivS (τ)dτ, −
t

∫

0

i>iS(τ)v̇iS(τ)dτ,

that, as indicated in Fact 2, have the interpretation
of extracted “generalized energies”, while the supply

rates, v̇>iSiiS and v>vS
_̇

ivS , are “generalized powers”.

In this section we the study the behavior of the sum
of the supply rates of the energy storing elements of
the circuit that—with an obvious abuse of notation—
we will call total generalized reactive power in the se-
quel. 5 We will derive a simple expression for the time
evolution of the total generalized reactive power—that
highlights the role of dissipation and suggests a pro-
cedure to regulate it with the inclusion of controlled
sources. For ease of presentation we will assume first
that the external sources are constant, and leave for
a remark the case of regulated sources. In Section 3
we present two examples, with a general time–varying
source, and with a regulated source for reactive power
control.

Proposition 1. Consider the RLC circuit of Fig. 1,
described by (4), (5), and satisfying Assumption A.1–
A.3. Define the scalar signal

q(t) := v>L (t)
_̇

iL (t) + i
>

C(t)v̇C(t), (10)

that we call total generalized reactive power, and as-
sume:

A.4 The regulated current, iiS , and voltage, vvS ,
sources are constant.

Then, along the trajectories of the circuit we have

q̇(t)=−
_̇

i

>

L(t)∇2G
_̇

iL(t)−v̇>C (t)∇2F v̇C(t)+g(t)(11)

where

g(t) :=−
_̇

i

>

L(t)∇iL

[

(∇iL
P )

>
L−1(iL(t))

]

L(iL(t))
_̇

iL(t)

+v̇>C (t)∇vC

[

(∇vC
P )

>
C−1(vC(t))

]

C(vC(t))v̇C(t)

and P (iL,vC) is given in (5). In particular, if the
inductors and capacitors are linear, the term g(t) sim-
plifies yielding

q̇(t) = −2
_̇

i

>

L (t)∇2G
_̇

iL (t)− 2v̇>C (t)∇2F v̇C(t)

5 In (Waytt and Ilic, 1990) the difference of the supply rates, called
preact,2, is proposed as a definition of instantaneous reactive power.
We refer the reader to this paper for many interesting discussions.



Proof. First, we write the system (4), (5) in the form

M(iL,vC)

[

_̇

iL
v̇C

]

= ∇PA (12)

where we defined M(iL,vC) :=

[

−L(iL) 0
0 C(vC)

]

,

PA(iL,vC) := P (iL,vC)− i>LBvSvvS +v>CBiSiiS ,
and we note that M(iL,vC) is full rank.

The proof uses, again, Proposition 5 of (Ortega et
al., 2003) to generate an alternative description of the
system dynamics. Specifically, we will prove now that
the system can be written as

M̃(iL,vC)

[

_̇

iL
v̇C

]

= ∇P̃A, (13)

where

M̃(iL,vC) :=

[

M̃11(iL,vC) M̃12(iL,vC)
M̃21(iL,vC) M̃22(iL,vC)

]

with
M̃11(iL,vC)=−∇2G−∇iL

[

(∇iL
P )

>
L−1(iL)

]

L(iL),

M̃12(iL,vC) = 2Γ,

M̃21(iL,vC) =−2Γ>,

M̃22(iL,vC)=−∇2F+∇vC

[

(∇vC
P )

>
C−1(vC)

]

C(vC)

and

P̃A(iL,vC) :=∇>PA

[

L−1(iL) 0
0 C−1(vC)

]

∇PA. (14)

From (12) and (13) it is obvious that to establish the
claim it suffices to prove that

M̃(iL,vC)M
−1(iL,vC)∇PA = ∇P̃A,

that can be easily verified via direct calculations.

The key observation now is that, replacing (12) in (14),
we get

P̃A =
[

(
_̇

iL)
> v̇>C

]

[

L(iL) 0
0 C(vC)

]

[

_̇

iL
v̇C

]

= (
_̇

iL)
>vL + v̇

>

C iC ,

where we have used (1), (2) to get the last identity.
Comparing with (10), we have P̃A(iL(t),vC(t)) =
q(t).

The expression of q̇(t) is obtained pre-multiplying
(13) by

[

(
_̇

iL)
> v̇>C

]

and invoking Assumption A.4.
/

Remark 1. The previous analysis remains unaffected
if we include current–dependent voltage sources in
series with the inductors and/or voltage–dependent
current sources in parallel with the capacitors. Indeed,
the expressions (10) and (11) remain valid with the
new co–content and content functions

vs

is

R1

R2 C

+

-

vc

Fig. 2. A simple voltage–driven linear RC circuit
example.

F̃ (vC) = F (vC) +

niu
∑

k=1

vkC
∫

0

ûki(v
′

kC)dv
′

kC

G̃(iL) =G(iL) +

nvu
∑

k=1

ikL
∫

0

ûkv(i
′

kL)di
′

kL,

where niu ≤ nC , nvu ≤ nL are the number of
added current and voltage sources, respectively, and
ûki, ûkv : R → R are their characteristic functions,
that are chosen by the designer. 6 As indicated in
(11), and illustrated in Example B in the next subsec-
tion, these control actions enter through the Hessians
∇2F̃ , ∇2G̃. Henceforth, q(t) can be regulated via a
suitable selection of the “slopes” of the characteristic
functions of the sources.

3. ILLUSTRATIVE EXAMPLES

A. A Forced LTI Circuit Consider the simple LTI
RC circuit of Fig. 2 driven by a time–varying voltage
source vS(t). The dynamics are described by (12) with

PA(vC , t) = −
1

2R
v2
C +

1

R1

vCvS(t), M = C,

where 1

R
:= 1

R1

+ 1

R2

. The transformed model (13)
has the parameters

P̃A(vC , t) =
1

C

[

− 1
R
vC +

1

R1

vS(t)

]2

, M̃ = − 2
R
.

It is clear that

P̃A(vC(t), t) = v̇C(t)iC(t) = q(t).

Computing its time derivative we get

q̇(t) =− 2
R
v̇2
C(t)

+
2

C

[

− 1
R
vC(t)+

1

R1

vS(t)

]

1

R1

v̇S(t) (15)

where the first right hand term is the one given in
Proposition 1, with G = g(t) = 0, while the remain-
ing ones appear due to the time–variations of vS(t).

In this simple example we can actually compute an
explicit expression of q(t). Indeed, (15) can be written
in the form

q̇(t) = − 2

RC
q(t) + 2

√

q(t)

C

1

R1

v̇S(t)

6 For ease of presentation, but without loss of generality, we have
made the sources dependent on the first few elements of the vectors
vC and iL.
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Fig. 3. A van der Pol oscillator.

Consider the case when vs(t) =
√
2V cos(ωt), then

the solution of the differential equation above is easily
obtained as

q(t)=
2V 2R2Cω2

R2
1(1+R

2C2ω2)2
[RCω cos(ωt)−sin(ωt)]2+εt

where εt are exponentially decaying terms due to
initial conditions. The average value of this function
coincides with the classical reactive power of the
circuit, as computed for instance in Example 11.7 of
(De Carlo and Lin, 2001), that is

1

T

T
∫

0

q(t)dt = −ωQω.

B. Reactive Power Control of an Oscillator Let us
consider now the example of the van der Pol oscillator
depicted in Fig. 3 that is described by

L
_̇

iL = vC

Cv̇C = −iL − îR(vC)

îR(vC) := αvC(v
2
C − 1)

where L,C, α > 0. The dynamics can be written in
the form (12) with

PA(iL, vC) = −iLvC − F (vC), M =

[

−L 0
0 C

]

where F (vC) =
−α
4
v2
C(v

2
C − 2) is the circuits co–

content. The transformed model (13) has the parame-
ters

P̃A(iL, vC) =
1

L
v2
C +

1

C

[

−iL + αvC(v
2
C − 1)

]2
,

M̃(vC) =

[

0 −1
1 α(3v2

C − 1)

]

.

Once again, we have that

P̃A(iL(t), vC(t)) =
_̇

iL (t)vL(t)+ v̇C(t)iC(t) = q(t).

The time derivative of the generalized reactive power
is, according with (11), given by

q̇(t) = −2∇2F v̇2
C(t) = 2α(3v

2
C − 1)v̇2

C(t)

As indicated in Remark 1 the generalized reactive
power of the circuit can be “controlled” adding reg-
ulated sources. For instance, let us add a voltage–
dependent current source in parallel with the capacitor,
as shown in Fig. 4, where the control action is given
as u = ûi(vC), with ûi : R → R a function to

iL
C

+

-

vc L iR̂ vc( )uî vc( )

Fig. 4. van der Pol oscillator with a regulated current
source.

be defined. One can easily verify that the previous
analysis remains unaffected, and only the circuit co–
content has to be changed to

F̃ (vC) =
−α
4
v2
C(v

2
C − 2) +

vC
∫

0

ûi(v
′

C)dv
′

C

The rate of change of the reactive power becomes now

q̇(t) = −2∇2F̃ v̇2
C(t) = 2[α(3v

2
C(t)−1)−∇ûi]v̇2

C(t).

The previous expression shows how we can modify
q(t) via a suitable selection of the “slope” of the func-
tion ûi(vC). A similar effect is obtained, but now mod-

ulated by (
_̇

iL)
2, placing a current–dependent voltage

source in series with the inductor.

4. OUTLOOK AND OPEN PROBLEMS

The results reported in this work are part of a long term
research program whose final objective is the devel-
opment of model–based compensator design methods
for electric energy processing systems with nonlin-
ear loads. A review of the literature reveals that the
vast majority of the authors adopt a signal–processing
viewpoint of the problem. At its most basic level, that
prevails for instance in single phase active filters de-
sign, a desired waveform for the current is defined and
compared with the actual signal to generate an error
that a compensator (usually a set of nested PI’s) tries
to minimize. The intrinsic limitations of this approach,
that makes no attempt to model the loads and essen-
tially boils down to estimating derivatives of (highly
noisy) signals, are quite evident. More “advanced”
schemes try to capture on a (possibly vector) signal
the effect of the loads. More precisely, looking at the
voltage and current on the terminals of the load, a
signal—axiomatically called reactive power or some
variation of this name—is computed. It is then claimed
that this signal measures the inactive power, therefore
reducing its magnitude yields efficient compensation
schemes.

A paradigmatic example of this approach is the highly
popular DQ Reactive Power Compensation scheme of
(Akagi et al., 1984) that can be briefly described as
follows, see also (Akagi et al., 1999) for a modern
tutorial account, and (Willems, 1972) for a particu-
larly illuminating exposition of the main ideas that
we briefly recall here. Consider a polyphase system
with voltages and currents (v, i) providing a constant
voltage to a load. Define



ip =
iTv

|v|2v, iq = i− ip, qA = |v||iq|.

With some simple geometric arguments we conclude
that

|i|2 = p2 + q2A
|v|2 .

where p = iTv is the instantaneous active power.
Now, using compensators without energy storage, p
cannot be changed, therefore for a given voltage
energy, the expression above shows that the cur-
rent losses are minimized reducing qA. This basic
practical approach, introduced 21 years ago, was
easily understood by practitioners and universally
adopted as the de facto standard for power electronic
compensators—probably because of the lack of a bet-
ter option. It is only recently, see e.g. (Lev–Ari and
Stankovic, 2003), that it is recognized that a com-
pensator based on this notion will not only fail to
eliminate the inactive power, but will certainly in-
troduce additional undesired harmonics into the cur-
rent waveform—putting a serious question mark into
the effectiveness of this approach. (See (Pérez et
al., 2004) for a rectifier application where the DQ Re-
active Power Compensation control is compared with
a passivity–based LTI PI control.)

Substantiated by the arguments advanced in Willems
in (Willems, 1991), it is our contention that this kind
of signal–processing viewpoint is inadequate for the
solution of the problem of interest in this paper. There-
fore, following (Ortega et al., 2001), we advocate an
alternative control–by–interconnection viewpoint and
adopt an operator–theoretic framework for our pro-
gram. It is natural that the first steps in this program
concern modelling aspects, as well as the exploration
of new properties of these models—the results may
be found in (Jeltsema and Scherpen, 2002; Ortega
and Shi, 2002; Ortega et al., 2003; Jeltsema et al.,
2003; Garcia–Canseco and Ortega, 2004), with some
preliminary investigation on stabilization included in
(Ortega et al., 2003).

The present work constitutes the next, modest, step
and its main contribution are some exploratory ideas
for compensator design, based on the behavior of the
operators supply rate, that we claim provides a mea-
sure of the circuits reactive power.

Many problems and questions remain open, among
them we might cite: in a typical control configura-
tion, the compensator is a multiport which is placed
between the generator and the load. Therefore, the
generator “sees” now a new load consisting of the cas-
cade of the compensator and the original load. Follow-
ing the philosophy of this paper and that of (Garcia–
Canseco et al., 2004), where loads are classified in
terms of passivity of some suitably defined multiports,
the aim of the compensator is then to modify the pas-
sivity properties of the new multiport associated to this
new load. How to formalize this conceptual scheme,

and propose a practical implementation for it, are open
questions to be investigated.
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