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Abstract: The paper considers the problem of estimating the unknown input of a
nonlinear dynamical system, described by polynomial or rational differential equa-
tions, from a finite set of noisy output samples. Without additional information
this problem is ill-posed since it is assumed that the unknown function belongs to
an infinite-dimensional space. We tackle this difficulty by designing a novel class
of fast regularization algorithms that relies upon differential algebra techniques.
Monte Carlo studies are used to demonstrate the goodness of the new approach.
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1. INTRODUCTION

At the beginning of the past century ill-posed
problems were considered mathematical anoma-
lies, unable to describe physical systems. This be-
lief was wrong and, in particular, algorithms able
to reconstruct functions, starting from noisy and
indirect samples, have now many applications.
For instance, in medicine they may allow one to
estimate inputs of physiological systems that are
not accessible to direct measurements, e.g. hor-
mone secretion, from output data, e.g. hormone
concentration in plasma. Crucial information on
the intimate function of a bio-system may thus
be provided (DeNicolao et al., 1997; Pillonetto
and Bell, 2004). Other applications regard e.g.
imaging, artificial vision, numerical differentiation
and seismology, see e.g. (Bertero, 1989; Mendel,
1983; Thompson and Tapia, 1990).
In recent years many methods have been proposed
to solve ill-posed problems, see e.g. (Bertero and
Boccacci, 1998) for an excellent review. The most
powerful and employed technique is Tikhonov reg-
ularization. It provides the function estimate as

the solution of a variational problem containing a
term accounting for the adherence to experimen-
tal data and another one that privileges smooth
solutions. A central question for this theory is
the determination of the so-called regularization
parameter that has to establish the right trade-
off between these two contrasting components.
When the input-output relationship is linear, a
number of robust criteria have been derived to
automatically determine this key parameter, e.g.
generalized cross validation (GCV) and maximum
likelihood (ML) (Wahba, 1990). In nonlinear in-
verse theory the problem is instead much more
involved since it becomes difficult to define rigor-
ous statistical regularization criteria. In practice,
sub-optimal extensions of the above-mentioned
ones are employed. Of note, studies report that
they may work well in many situations, see e.g.
(Gu, 1993; Kristensen et al., 2004; Bell and Pil-
lonetto, 2004) but in general turn out difficult to
implement. In fact, they typically rely on iterative
algorithms that do often not give guarantee of
reaching a global minimum. In addition, they may



turn out computationally demanding, e.g. when
every objective evaluation needs the integration
of complex nonlinear differential equations.
In this paper we address the attention to in-
put reconstruction of a rather general type of
nonlinear systems described by polynomial or
rational differential equations. Then, we design
a novel numerical scheme that circumvents the
above-described difficulties related to function es-
timation by exploiting some concepts of differ-
ential algebra (Audoly et al., 2001; Saccomani
et al., 2003). So far, these methods have been
mainly used to study a priori identifiability of
unknown system parameters. Here, instead, we
employ them to define a new class of fast regular-
ization algorithms able to recover an accurate in-
put reconstruction without the need of estimating
any kind of regularization parameter contained in
a nonlinear regularization problem.
The paper is organized as follows. In Section 2, we
report the mathematical statement of the prob-
lem and an example system involving Michaelis-
Menten dynamics. In Section 3 the new algorithm
is introduced. We first design a class of Kalman
smoothing filters able to estimate a continuous-
time profile of the system output and of its deriva-
tives, until the desired order. Then, we show
how to reconstruct the unknown input from the
smoothed output estimates. In Section 4 the dy-
namic system described in Section 2 is used to
test the new approach via Monte Carlo studies.
Conclusions are offered in Section 5. Finally, one
can find in Appendix a brief recall of Sobolev
spaces and the notation used in this paper.

2. STATEMENT OF THE PROBLEM

We are given a discrete set of noisy observations
modelled as the r-dimensional output y(t) of a
nonlinear dynamical system

{

ẋ(t) = f [x(t)] + g[x(t)]u(t)
y(t) = h[x(t), u(t)]

(1)

where x is the n-dimensional state variable, rep-
resenting e.g. masses, concentrations etc., and u
is the input, e.g. time histories of drug injections.
The system is assumed to be scalar-input for sim-
plicity. The general procedure of this paper can be
applied to a general MIMO system, but our scope
here is mainly to convey the basic idea.
If initial conditions are specified, the relevant
equation x(t0) = x0 is added to the system.
Noisy data are assumed collected at discrete in-
stants {tk} and denoted

zk = y(tk) + νk (2)

with k = 1, 2, ..., d, where νk is a sequence of
uncorrelated Gaussian random errors of known

covariance superimposed to the output at time
tk. This output error term, either a disturbance
or a measurement error term, affects additively
the measured output.
The essential assumptions on system (1) are that

• the admissible scalar input functions t →
u(t) are smooth functions of time,

• there is no feedback, i.e. u is a free variable,
in particular not allowed to depend on x,

• the entries of f , g and h are polynomial or
rational functions of their arguments.

Our goal is to reconstruct the input function
u from the noisy measurements of y. Since the
system designer does often not have sufficient
information to restrict u to a finite-dimensional
model this typically results in a nonlinear ill-posed
problem.
We shall use differential algebra techniques to
describe the input-output relation of the model
(1) in terms of a nonlinear static combination
of input and output derivatives (Audoly et al.,
2001; Saccomani et al., 2003). For the fundamen-
tals of differential algebra, the reader is referred
to (Ritt, 1950). Here we only recall that a dif-
ferential polynomial f(x) is a polynomial in the
variable x and a finite number of its derivatives
x(1)(t), ...,x(m−1)(t). The dynamic system (1) can
be looked upon as a set of n+ r differential poly-
nomials which are the generators of a differential
ideal I in a differential ring. The characteristic set
of the ideal I is a finite set of n + r nonlinear
differential equations which describes the same
solution set of the original system (Ljung and
Glad, 1994). In particular, the first r differential
polynomial equations of the characteristic set have
the following form:

L̂j [y, u] = 0 j = 1, ..., r (3)

These polynomials in the variables u, u(1), .., y, y(1), ..
are obtained after elimination of the state vari-
ables x and hence represent exactly the pairs
(y, u) which are described by the original system.
We will refer to them as the input-output relation
of the system. We have developed a differential
algebra algorithm (Audoly et al., 2001) to find
efficiently the characteristic set of the polynomials
defining the model.
It will be convenient to rewrite the input-output
relations (3) of model (1) in the following form:

Lj0[y] = Lj [y, u] j = 1, ..., r (4)

where, for every j, Lj0[y] is of degree 0 in u
(and assumed non identically null in the sequel
only for simplicity) and Lj [y, u] is the polynomial
term of the input-output differential equation that
involves derivatives and powers of the observable
variables y and u.



Having brought the u-dependent part of the rela-
tion to the right-hand side, eq.(4) can be seen as a
regression problem. In principle, from knowledge
of y,y(1), ...,y(m−1) at times tk, one could try to
obtain u, u(1), ..., u(m−1) at times tk by solving the
above algebraic relation. However, in practice, we
have some problems:

(1) since the derivative terms in equations (4) are
not available from measurements, they must
be estimated from the output data records,

(2) there will be unavoidable approximation er-
rors involved in the process. So, if (4) is to be
used for estimating u, it would be worth in-
troducing a statistical model of these errors,

(3) it would be important to reconstruct a
continuous-time profile of u and not only
estimates of u(tk), i.e. at the discrete times
tk.

Our plans to solve the above problems is presented
in the following. After introducing a system ex-
ample, we will attack the problems in the given
order.

Example 1. Consider a two-compartment model
which describes the kinetics of a drug in the
human body. The drug is injected into the blood
where it exchanges linearly with the tissues; the
drug is irreversibly removed with a nonlinear
saturative characteristic from the blood and with
a linear one from the tissue. The system is














ẋ1(t) = −(θ1 +
θ3

θ4 + x1(t)
)x1(t) + θ2x2(t) + u(t)

ẋ2(t) = θ1x1(t)− θ2x2(t)
y(t) = x1(t)

(5)

where x1, x2 are drug masses in compartment 1
and 2, with initial conditions x1(0) = x2(0) = 0; u
is the drug input; y is the measured drug output;
θ1, θ2 are the (constant) rate parameters; θ3,
θ4 are the classical Michaelis-Menten parameters.
The system is accessible from every point. Using
differential algebra techniques, in particular Ritt’s
algorithm to eliminate the state variables (Ritt,
1950) one ends up with the following input-output
differential equation of the model, as seen from the
input-output terminals,

y2ÿ + θ1θ2ẏ(y + θ4)
2 + θ2θ3y(y + θ4)+

θ4ÿ(2y + θ4) + θ3θ4ẏ = (u̇+ uθ2)(y + θ4)
2 (6)

3. THE ALGORITHM

3.1 Estimating the output function and its derivatives

For the sake of simplicity, from now we will
restrict our attention to single-input single-output
dynamical systems, i.e. in eq. (4) r is set to 1.
Thus, in the following L0 = L10 and L = L1,

even if generalizations are possible and will be
discussed in a future paper. In this Section we
face the problem of estimating, from {zk}, the
signals y(t), y(1)(t), ..., y(m−1)(t) present in eq. (4).
To this aim, we use a Tikhonov-type estimator
that recovers the estimate of y(t) as the solution
of the following variational problem

arg min
y∈Wm

d
∑

k=1

(y(tk)− zk)
2

σ2k
+
‖P0[y]‖

2
Wm

λ21
(7)

where σ2k denotes the variance of νk while 1/λ21 is
the unknown regularization parameter. In order
to derive a criterion to determine λ1 as well as
an efficient computational scheme implementing
it, we interpret Problem (7) in a Bayesian setting.
We assume that the curve y(t) is the realization
of a continuous-time stochastic Gaussian process
defined by the following stochastic Ito’s integral

y(t) =

1
∫

0

Gm(t, s)λ1dβ(s) +

m−1
∑

i=0

ξiψi(t) (8)

where β(s) is a Brownian motion (independent
from {νk}) and the scalars {ξi} may be unknown.
It can be derived from (Wahba, 1990) that, given
λ1 and {zk}, Problem (7) provides the mini-
mum variance estimate of y. Now, let ei the m-
dimensional row vector with i − th component
equal to 1 and all the other ones equal to zero
while, by definition, the components of e0 are all
set to zero. A state-space representation of the
Gaussian process y(t) and of the observations {zk}
is then given by







ẋy(t)dt = Ayxy(t)dt+ Byλ1dβ(t)
xy(0) ∼ N(x0

y,V0)
zk = Cyxy(tk) + νk

(9)

where xy(0) = [ξm−1 ξm−2 ... ξ0]
T , with x0

y

and V0 representing the available information on
{ξi} prior to measurements, and

Ay =









e0
e1
...

em−1









By =
(

eT1
)

Cy =
(

em
)

(10)

One can thus see that the last component of the
state vector xy(t) ∈ <

m corresponds to y(t) while
the other ones represent its derivatives until order
m − 1. The estimation problem thus becomes
a continuous-time fixed-interval linear smooth-
ing problem with discrete data and an unknown
system parameter λ1. A maximum likelihood es-
timate of the regularization parameter can be
obtained by maximizing the likelihood function
given by



l(z, λ1) = p(z1|λ1)

d
∏

k=2

p(zk|Zk−1, λ1) (11)

where Zk = [zk zk−1 ... z1]. Optimization of
the likelihood just requires an univariate search,
where the objective can be evaluated at every λ1
value by a forward Kalman filtering. In fact, fol-
lowing (Kitagawa and Gersch, 1985) and denoting
with ςk and rk the innovations and the observation
variance conditioned on the observations up to
time tk−1, with t0 = 0, we obtain

− log(l(z, λ1)) = K +
1

2

d
∑

k=1

log rk +
1

2

d
∑

k=1

ς2k
rk

(12)

where K is a constant we are not concerned with.
It thus becomes clear that, in order to obtain
an algorithm that scales with the number of the
observed data, it is important to determine the
sampled version of our state-space model at {tk}.
The next Proposition will provide a computable
representation for it. It can be proved after some
simple computations that exploit Ito’s isometry
and the simple structure of matrices Ay and By.

Proposition 2. Assume that xy(t) satisfies equa-
tion (9). The sequence {xy(tk)} satisfies the fol-
lowing discrete stochastic difference equation

{

xy(tk+1) = eA∆kxy(tk) + λ1ωk

ωk ∼ N(0,Qk)
(13)

where {ωk} are mutually independent, ∆k = tk −
tk−1, e

A∆k is an m×m lower-triangular Toeplitz
matrix with i-th component of its first column
given by ∆i−1

k /(i−1)! while Qk is anm×mmatrix
whose (i, j)-entry is given by

Qk(i, j) =
∆i+j−1
k

(i− 1)!(j − 1)!(i+ j − 1)
(14)

Finally, once estimated λ1, a Kalman smoothing
filter can be used to obtain estimates of the state
vector at any desired temporal instant as well as
the covariance matrix of the error affecting them
(hereby denoted Vk

s when referred to instant tk).

3.2 Estimating the unknown input

3.2.1. Input-output relation linear-in-u We start
considering the case where L turns out to be a
linear operator as function of u, u(1), ... Interest-
ingly, we have noticed that many dynamic bio-
logical models induce this kind of input-output
relationship, see (Audoly et al., 2001). A relevant
example has been also provided in Section 2.
Let Lk[y, u] and Lk0 [y] the differential opera-
tors L and L0 evaluated at tk. Let instead

w(t), w(1)(t), ..., w(m−1)(t) be continuous-time (Gaus-
sian) error terms that are superimposed to the es-
timate of y(t), denoted ŷ(t), and to its derivatives
and that represent the reconstruction error of the
Kalman smoothing filter (note that for every i
the statistics of w(i)(tk) can be recovered by Vk

s ).
We define bk the m-dimensional row vector whose
entries are given by

bk(i) =
∂Lk0 [ŷ, ŷ

(1), ..., ŷ(m−i) + w(m−i), ...]

∂w(m−i)
|w(m−i)=0(15)

The following approximated relationship, where
the influence of w(t), w(1)(t), ... on L is neglected,
is then derived

Lk0 [ŷ] = Lk[ŷ, u] + εk (16)

where {εk} are assumed Gaussian and mutually
independent with variance ρ2k defined by

ρ2k = bkV
k
sb

T
k (17)

Then, the estimate of u is defined as the solution
of the following variational problem

arg min
u∈Wυ

d
∑

k=1

(Lk0 [ŷ]− L
k[ŷ, u])2

ρ2k
+
‖P0[u]‖

2
Wυ

λ22
(18)

We note that in order to have a well-defined
solution it is important to choose υ so as to
make Lk : W υ 7→ < a bounded functional for
every k. This holds only if Lk[R(., t)] turns out
a well defined function in W υ (see Section 11
of (Aronszajn, 1950)). Proposition 3, reported
in Appendix, allows the conclusion that such
condition is satisfied for values of υ larger than
the maximum differential order of the operator L.
As concerns the numerical determination of the
solution of Problem (18), we move along the same
line developed in the previous Section. Let the
scalars {ζki } be defined by

Lk(ŷ, u) =

υ
∑

i=1

ζki u
(υ−i)(tk) (19)

We then obtain the following state-space model
for the measurements {Lk0 [ŷ]}







ẋu(t)dt = Auxu(t)dt+ Buλ2dβ(t)
xu(0) ∼ N(x0

u,V0)

Lk0 [ŷ] = Ck
uxu(tk) + εk

(20)

where, defining the υ-dimensional vector ei as in
the previous sub-section, we have

Au =









e0
e1
...

eυ−1









Bu =
(

eT1
)

Ck
u =

(

ζk1 ...ζ
k
υ

)

(21)



In (20), the last component of the state vector
xu(t) ∈ <υ represents u(t). Given xu(0), it is
modeled as a Gaussian process with mean de-
termined by xu(0) and deviation from the mean
described as the (υ − 1)-fold integration of the
Wiener process. As concerns x0

u and V0, such
quantities can be defined starting from the prior
information on u at time zero combined with the
knowledge of the initial conditions of the system
(2) and with the estimates of y(0), .., y(m−1)(0).
Using the stochastic interpretation of Tikhonov
regularization, the minimum variance estimate of
the ν-th component of xu(t), given {L

k
0 [ŷ(t)]} and

λ2, corresponds to the solution of Problem (18)
(except for a penalty term deriving from the Gaus-
sian prior on xu(0)). Such estimate can thus be
efficiently obtained by exploiting the same numer-
ical procedure developed in the previous Section.
We first achieve λ2 by maximum likelihood. Then
a Kalman smoothing filter is used to obtain a
continuous-time estimate of the input.

3.2.2. The general case The second strategy we
describe to rapidly recover the unknown input
does not necessarily require the linearity of L in u.
It provides a continuous-time and smooth recon-
struction of u just solving a regularized estimate
of the differential equation (4) conditioned on
the true output, obtained by replacing y(t) with
the estimate ŷ(t) and assumed to have only one
solution in u. It is worth noticing that, differently
from the estimator of eq.(18), this approach does
not account for the uncertainty of the estimates
of y. Thus, when L is linear, if the noise model of
eq.(16) is able to well describe such uncertainty,
the method reported in the previous sub-section
could provide better results.
Finally, it can be proven that the estimator here
described is statistically consistent, under some
technical conditions on the dynamic system under
study. The proof of this result is left to a future
extended version of this paper.

4. NUMERICAL EXPERIMENTS

The algorithm is here applied to reconstruct, from
a finite set of noisy output samples, two signals
modeled as the unknown input of the system (5)
with initial conditions set to zero. In both the
cases we consider a Monte Carlo study where
at every of the 1000 Monte Carlo runs a new
realization of the output noise is generated and
the system parameters are drawn from a uniform
distribution on [0, 10]4. The value u(0) is assumed
known.
As concerns the first case study, the unknown
input is 1 − e−6t, with t ∈ [0, 1]. The function is
displayed in the top panel of Figure 1 (solid line)
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Fig. 1. Monte Carlo simulation Top and bottom

panel True function (solid line) and mean of
the estimates ± one SD (dashed lines)

and has to be reconstructed from 40 output sam-
ples uniformly collected on [0, 1] and corrupted
by a zero-mean Gaussian noise with a constant
percentage of variation (CV%) equal to 5. At
every Monte Carlo run we first reconstruct the
output function and its derivatives. Then, we use
estimator (18) to recover the input estimate. Fig-
ure 1 (top panel) plots the mean of the resulting
1000 estimates plus/minus one SD (dashed lines).
One can see that the performance of the estimator
is very good. The estimate is not biased and the
variance of the estimates is low during all the ex-
perimental interval. The average root mean square
error (AR) turns out 0.043. We also estimated the
input without resorting to the estimator of eq.
(18), as described in Section (3.2.2). In this case
AR turns out 0.052. This result shows that the
additional regularization step is able to improve
the estimation process but it also demonstrates
that the quality of the estimates is similar.
As concerns the second case study, we use a
classical test function taken from (Craven and
Wahba, 1979) and displayed in the bottom panel
of Figure 1 (solid line). The unknown input has to
be reconstructed from 100 noisy output samples,
uniformly collected on [0, 1] and corrupted by a
zero-mean Gaussian noise with a CV% equal to
10. Figure 1 (bottom panel) plots the mean of
the 1000 estimates ± one SD (dashed lines). It is
apparent that the algorithm still performs well.
In this case AR turns out 0.127 while avoiding
the additional regularization step provided by es-
timator (18) it increases to 0.145. Thus, comments
similar to those regarding the previous case still
hold.
Finally, it is worth mentioning that the entire al-
gorithm has been coded using Matlab 6.5, running
under a Pentium IV 2.4 Ghz. On average, solving
a single nonlinear inverse problem takes around
one second, a result that appears remarkable also
considering that the code is not optimized.



5. CONCLUSIONS

In this paper it has been shown that the input
of a rather general class of nonlinear dynamical
systems may be estimated in a stable and effi-
cient way without directly solving any kind of
nonlinear regularization problem. Numerical ex-
periments have been used to illustrate the valid-
ity of the new approach by using a well-known
model involving Michaelis-Menten dynamics. In
the near future we plan to further test the method
by employing mathematical descriptions of other
relevant physical phenomenons.

Appendix. Sobolev spaces

We denote Wm(0, 1), or simply Wm with m >
0 an integer, the Sobolev space of continuous
functions f defined on [0, 1] such that

• f has continuous derivatives f (k) of order
k < m

• f (m−1) is absolutely continuous and its al-
most everywhere defined derivative f (m) lies
in the classical Lebesque space L2(0, 1).

Let ‖.‖L2 be the norm on L2(0, 1). The norm on
Wm is instead denoted by ‖.‖Wm and defined by

‖f‖2Wm =

m−1
∑

k=0

[f (k)(0)]2 + ‖f (m)‖2L2

Now, let ψk(t) = tk/k!, for k = 0, 1, 2, ..,m − 1,
and let Gm be the Green’s function given by

Gm(s, t) =







0 if s ≤ t
1 if s > t and m = 1

(s− t)m−1/(m− 1)! otherwise

Then, we remark thatWm is a reproducing kernel
Hilbert space (RKHS) with reproducing kernel
given by

R(s, t) =

m−1
∑

k=0

ψk(s)ψk(t) +

1
∫

0

Gm(s, u)Gm(t, u)du

The above equation also shows that Wm can
be interpreted as the direct sum of two RKHS,
see (Wahba, 1990). The first one is spanned by
{ψk}. The second one admits the same definition
of Wm except that its functions also satisfy the
boundary conditions f (k) = 0, k = 0, 1, ...,m − 1.
The projection of f on such sub-space is denoted
P0[f ].
The following proposition can be finally proved
with arguments analogue to those used in the
proof of Theorem 23 in (Bell and Pillonetto, 2004)

Proposition 3. For every s, R(s, t), as function of
t, belongs exactly to C2m−2, i.e. it is continuous
exactly until its (2m− 2)-th derivative
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