

MODEL DRIVEN DEVELOPMENT OF FUNCTION BLOCK BASED
DISTRIBUTED CONTROL APPLICATIONS

Kleanthis Thramboulidis, Dimitris Perdikis, Spiros Kantas

Electrical & Computer Engineering, University of Patras, Greece.
thrambo@ee.upatras.gr, {perdikis,kantas}@ceid.upatras.gr

Abstract: In this paper, an approach for the model driven development of distributed
control systems is presented. The proposed approach adopts the IEC61499 Function
Block construct for the design phase and supports many different implementation
platforms. Specific model-to-model transformers have been developed to automate
the transformation of FB design models to CORBA component model (CCM)
executable code. GME, a meta modelling tool, and CIAO, a QoS-aware CCM
implementation, were utilized to develop Archimedes, an IEC-compliant prototype
Engineering Support System. Archimedes demonstrates the applicability of the
proposed approach and greatly simplifies the development process of distributed
control applications. Copyright © 2005 IFAC

Keywords: Computer aided engineering, control system design, Function Block,
Distributed computer control systems, Industry automation, component based
development.

1. INTRODUCTION

Today’s control applications are usually developed in
the form of large monolithic software packages that
are difficult to be maintained, modified, and extended
(Heck et al., 2003). The engineering tools that are
used in the development and deployment processes
address a little, or not at all, dimensions such as
modularity, flexibility, extensibility, reusability, and
interoperability. To address these problems the
International Electro-technical Commission (IEC),
has defined the basic concepts and a methodology for
the design of modular, re-usable Distributed Control
Systems (DCSs). The IEC61499 standard defines the
Function Block (FB) as the main building block and
the way that FBs can be used to define robust, re-
usable software components that constitute complex
DCSs. However, the IEC model does not define the
way that FB design models will be implemented and
does not exploits current trends in Software
Engineering.

Advances in software engineering may facilitate the
development and deployment of complex DCSs.
Model Driven Development (MDD) and Component-

based architectures promote code reuse and
significantly decrease development and validation
time. CORFU FBDK (Thramboulidis and Tranoris,
2004), an IEC-compliant Engineering Support
System (ESS), integrates the Unified Modelling
Language (UML) with the IEC FB model to provide
a model driven development process for the analysis
and early design phases of control applications. In
this paper, this process is extended to address the
design and implementation phases of DCSs. The
adopted MDD paradigm considers as primary
artefacts of software development not programs, but
models created by modelling languages. The
CORBA Component Model (CCM) that is adopted as
implementation platform in the proposed approach is
the OMG proposal for component based
development. CCM defines the CORBA component
as the basic building block and establishes standards
for implementing, packaging, assembling, deploying
and executing applications as aggregation of
components.

Archimedes, a prototype system platform has been
developed to demonstrate the applicability of the
proposed approach. Archimedes enables the

developer to construct the FB-based design models of
the control application and the subsequent automatic
transformation of these models to executable ones in
the form of deployed executable components. GME,
a meta modelling configurable toolset, was adopted
and tailored to the control and automation domain.
GME supports the easy creation of domain-specific
modelling and program synthesis environments, and
provides the generic functionality of graphical
development environments required to address the
needs of an IEC-compliant ESS. CIAO, a QoS-aware
CCM implementation (http://www.cs. wustl.edu
/~schmidt/ CIAO.html), was selected to move from
the FB-based design model, to a component based,
modular, reconfigurable implementation model.
Other CCM implementations such as OpenCCM,
MicoCCM, and Qedo, can also be used. To our
knowledge there is no other process or tool that
provides re-configurable executable code for
IEC61499 FB-based design models.

The remainder of this paper is structured as follows:
In Section 2, a brief overview of the CORFU
approach and the technological background used in
this paper is given. In section 3, the proposed Model
Driven Development process is presented. In section
4, Archimedes, a prototype IEC-compliant ESS that
fully supports the proposed approach is presented.
Finally, the paper is concluded.

2. TECHNICAL BACKGROUND

2.1 The CORFU approach

The CORFU development process is an IEC61499-
compliant process that defines a series of workflows
to cover the phases of requirements, analysis, design,
verification, implementation and deployment of
control applications. It adopts best practices from
component-based development, and utilizes specific
UML diagrams and integrates them with the FB
concept. The FB is an abstraction mechanism that
allows industrial algorithms to be encapsulated in a
form that can be easily understood and applied by
industrial engineers. The FB consists of a head that is
connected to the event flows and a body that is
connected to the data flows, as shown in Figure 1.
The functionality of a FB is provided by means of
algorithms, which process inputs and internal data
and generate output data. FB instances,
interconnected by event and data connections,
constitute the design model of the control
application.

The well-accepted use-case concept is utilized for the
requirement specifications. Component Interaction
Diagrams, of two levels of abstraction, are utilized
for the first realization of system’s use cases and are
used to show the system’s internal components and
the way they collaborate to provide the required
behaviour. Statecharts and class diagrams are
constructed in parallel to create the analysis model of
the application. The so created UML-based analysis

model is transformed to FB-based design
specifications that are better understood by control
engineers, and increase the reusability of legacy
applications. The CORFU development process is
already supported by a prototype ESS, namely the
CORFU FBDK (http://seg.ee.upatras.gr/CORFU).

 (a) Function Block (b) CORBA component
Fig. 1. The FB type and the Component Type.

2.2 The Generic Modelling Environment

GME is a configurable toolset with generic
functionality for graphical development that supports
the easy creation of domain-specific modelling and
program synthesis environments (Ledeczi, et al.,
2001). GME adopts the Model-Integrated Computing
paradigm that systematically applies domain-specific
modelling languages to engineer computing systems
ranging from small-scale real-time embedded
systems to large-scale enterprise applications
(Gokhale, et al., 2002). GME has a modular
component-based architecture that makes it easily
extensible.

GME is tailored to the specific application domain
through the construction of meta models that specify
the modelling paradigm of the application domain.
This modelling paradigm defines the family of
models that can be created using the so constructed
modelling environment. The tool’s functionality can
be further expanded with external software
components of three categories: Interpreters, add-ons
and plug-ins. Interpreters can be used to generate, by
accessing the GME models, the input for static or
dynamic analysis tools, configuration files for COTS
tools or even source code. Add-ons, which are useful
for extending the capabilities of the GME User
Interface, can react to GME-events, i.e., events
generated by its core components, to provide the
required extra functionality. Plug-ins are paradigm-
independent components that provide generic
functionality, as for example a plug-in which
searches for objects based on user defined criteria.
The concept of aspect is utilized by GME to allow
the developer to focus on selected views of a design
document.

2.3 The CORBA component model

CCM is an example of component middleware that
was specified by the OMG to address the limitations
of the CORBA object model (Wang, et al., 2001).
The CCM specification defines the construct of

CORBA component and establishes standards for
implementing, packaging, assembling, deploying and
executing applications as aggregations of
components. A CCM component collaborates with its
environment through ports, which are of four types as
shown in figure 1. Facets define the provided by the
component interfaces which can be invoked either
synchronously or asynchronously. Receptacles
provide a standard way for specifying interfaces
required by the component to function properly.
Event Sources/Sinks allow the component to loosely
interact with its environment based on the publish-
subscribe paradigm.

CCM defines a container mechanism, which serves
as the runtime environment for CORBA component
implementations that are called executors (Schmidt
and Vinoski, 2004). The container allows the
execution of components and provides a set of
interfaces to be used by components to access
various CORBA services, such as event notification,
transaction and security. It also manages the life
cycle of a component through a set of interfaces
called callback interfaces that should be provided by
the component.

CCM provides to component developers a
framework called CCM Implementation Framework
(CIF), which allows the rapid development of
applications increasing the ratio of generated code to
handwritten code. However, CCM, since it was
designed primarily for the enterprise applications
domain, is unsuitable for domains such as distributed
control applications that need to satisfy more QoS
aspects and mainly timeliness. Control applications
have stringent QoS requirements and any failure to
meet these requirements may lead to catastrophic
consequences. A solution, to make CCM applicable
to the real-time domain, is to combine component
middleware with real-time CORBA to create a QoS-
enabled component middleware. However, this
cannot be obtained by only utilizing the real-time
CORBA, since even though it standardizes the
mechanisms and interfaces for managing the QoS
policies, it does not separate the real-time policy
configurations from the application logic. On the
other hand, a QoS enabled component middleware,
such as CIAO, offers performance and predictability,
while improving the flexibility to compose and
configure the key QoS aspects of distributed real-
time systems.

3. OUR MODEL-DRIVEN APPROACH

The proposed in this paper approach is in the context
of the Model Integrated Mechatronic (MIM)
paradigm that is described in (Thramboulidis, 2004).
MIM is a new paradigm for the development of
complex manufacturing systems that promotes model
integration not only in implementation space
artefacts but also during the early analysis and design
phases of the development process. It supports the

model driven development of complex MechaTronic
Systems through the evolution of models that have as
primary construct the MechaTronic Component.
MIM exploits MDA and the FB approach to allow
the MechaTronic System’s builder to compose the
design model of the system from already existing
MechaTronic Component descriptions and proceed
through an automated model transformation process
to the implementation model of the system. In the
context of this work the focus is on the application
layer of the MIM Architecture. A fully automated
process for the generation of the implementation
model of the control application from the FB-based
design models is presented.

To support the automated generation of the
implementation model of the control application in
the form of component based application, the
following approaches are considered:
1. The straightforward transformation approach.

According to this a straightforward
transformation of FB-based models such as FB
types and FB networks, to component and
component assembly implementation artefacts
such as .idl, .cidl, and .csd files is supported.

2. The intermediate-model transformation
approach.

This approach utilizes artefacts of higher layer of
abstraction, such as the component type and the
component assembly, to construct an intermediate
representation that is next transformed to the final
implementation model.

Both alternatives are based on the fact that the
semantics of the IEC61499 FB type can be mapped
to the CCM component. However, the intermediate-
model approach results in a more powerful and
flexible model transformation process since it:
• increases the portability of the design model,
• utilizes commercial CCM tools for the

generation of the implementation model, and
• constitutes the first step towards the use of

component based model analysis tools for
performance and schedulability analysis.

Figure 2 presents the above two alternatives for the
transformation process of FB type to the
corresponding CCM implementation space artefacts.

Fig.

 2. FBtype-to-ComponentType transformation
alternatives.

Fig. 3. FBnetwork-to-ComponentAssembly transformation alternatives.

The first alternative that has already been developed
is based on the following mapping: Event inputs and
outputs are mapped to event sinks and sources
respectively; data inputs and outputs can be mapped
either to facets and receptacles respectively invoked
via asynchronous method invocation or to event sinks
and sources. Since the CCM component does not
have a construct to directly map the FB’s Execution
Control Chart (ECC), a template class was defined to
capture the FB’s behaviour. This template class is
composed of: a) a vector
ntries that correspo

ecific tools such as packaging,

used from within appropriate deployment tools to
deploy components into component servers, to
interconnect and configure them and then run the
control application.

4. ARCHIMEDES

4.1 Archimedes engineering support system

A prototype ESS, compliant with the IEC61499

main specific meta
he GME notation

ough FB-types are not currently
ned in an IEC-complia t graphical notation, such

a notation can be utilizing GME’s
dd-ons. The ECC editor allows for the specification

 in the

which contains a set of
nd to the ECC’s transitions, and

standard, has been developed. Do
models have been created with te

is initialized by the constructor of the Component’s
executor class, b) a pure virtual method called
“condition”, which is implemented in the
Component’s executor class and implements the
conditions for each transition, and c) a
“ProcessEvent” method which implements the
statechart of the component. The executor class of
every component type is defined to inherit this
template class.

Figure 3 shows the adopted process for the
transformation of FB networks to implementation
artefacts. According to the first alternative, the one
already developed, a straightforward transformation
to CCM component assembly implementation
artefacts is utilized. The second alternative is based
on the transformation of FB networks to CCM
component assemblies. Component assemblies can
be subsequently transformed utilizing commercially
available CCM tools to CCM component assembly
implementation artefacts. These artefacts are next
utilized by sp
assembly and deployment tools, to execute the
control application. Packaging tools are used to
package implementations of components with their
XML-based metadata. Assembly tools use XML-
based metadata to describe component compositions,
including their actual locations and the
interconnections between them. The so created
component assemblies and composition metadata are

that is based on UML. The function block type meta-
model and the function block network meta-model
constitute the source meta-models that define the
design space of the control application domain.
These meta-models explicitly define all the syntactic,
semantic and presentation information regarding the
FB concept for the design of distributed control
applications. UML class diagrams have been used to
model the syntactic definitions, while the Object
Constraint Language (OCL) was utilized to specify
the static semantics as constraints. The above meta-
models fully define the ESS editors, i.e., the FB-type
editor, the ECC editor, and the FB-network editor.

The FB-type editor allows the developer to define the
function block types that constitute the control
pplication. Even tha

defi n
 easily obtained by

a
of ECC types and their subsequent use
definition of FB types. The modifications proposed
by (Thramboulidis, et al., 2004) to the ECC model
can easily be implemented providing an alternative
more flexible transformation process to the more
widely used statechart notation.

Even though FB-types are not currently defined in an
IEC-compliant graphical notation, the instances of
the so created FB types appear in the FB network in

an IEC-compliant notation, as shown in figure 4. The
so created graphical representation is translated to
XML specifications that can be used for model
interchange with other FB-based tools such as the
FBDK of Rockwell Automation and the CORFU
FBDK. Already defined FB-types can be imported in
Archimedes ESS allowing:
a) the reuse of already defined FB-types from other

vendors, and
b) the tool to be easily integrated with CORFU

FBDK to exploit the integration of UML with the
FB concept that is provided by the later.

Fig. 4. The FB-network editor of Acrhimedes ESS.

The FB-network editor is based on the FB network

tme a-model part of which is shown in figure 5. It is
utilized by the control engineer to create networks of
FB instances with the appropriate event and data
connections that enable these instances to collaborate

order to provide the required by the FB-network
avior. FB-networks can be consid

in
eh ered as

of use cases if the requirements of the
control application has been captured using this
technique. Alternatively, the CORFU FBDK can be
used to support a model driven development process
from use case based requirements specifications to
FB-network design specifications. The so created
FB-networks can be imported by the Archimedes
ESS and utilized for the subsequent refinement of the
design model and the automatic generation of the
executable one. Figure 4 presents a FB-network for
the Teabag Boxing System (TBS) case study that has
been created using Archimedes ESS. TBS is a
simplified version of a real world system that is used
in the production chain of packed teabags. The
prototype control system that has been developed

e
e

omponent assembly artefacts for the component
etworks. For example the results of this

the

b
realizations

with Archimedes ESS to demonstrate th
ffectiveness of the proposed approach can be

downloaded from http://seg.ee.upatras.gr/MIM.

4.2 Implementation-model’s generation process

The so created FB design model is implementation
platform independent and can be utilized for the
automatic generation of many different
implementations either to meet specific QoS

characteristics or to satisfy implementation platform
constraints. A prototype process for the generation of
a CCM implementation model has already been
defined. A Real-Time Java and a real-time Linux one
are under development.

For the automatic generation of component and
component assembly artefacts of the CCM
implementation model from the so created FB-based
design models of the control application, Archimedes
currently supports the straightforward transformation
process. The model-to-model transformers access
through the GME API the source domain models and
automatically constructs, utilizing the source and
target domain meta-models, the corresponding
component implementation artefacts for the
component types as well as the corresponding
c
n
transformation process for the FB-network of
TBS are a set of .idl, .cidl, .csd, .ssd, .h and .cpp files
for each FB type, as well as a .cad file that contains
packaging, partitioning, interconnection and QoS
information for this FB-network.

Fig. 5. FB network meta-model in GME notation.

Even though the straightforward approach resulted in
a robust implementation process, it was proved hard
and error prone to develop this transformer from
scratch. It is estimated that the process of
constructing interpreters can be automated by the
GME. The idea is to construct an additional model
that should capture the mapping of the constructs of
the source meta-model to the constructs of the target

model, and to include in this model, the
semantics that are required for the automatic
generation of the model-to-model transformer from
the source and target meta-models.

A more flexible transformation process is obtained
following the approach of the intermediate
component and component assembly models that
utilizes already existing CORBA component based
modelling tools such as the CADML (Lu, et al.,
2003). However, working to this direction it was
proved that the CCM and the component assembly
meta models that are provided by the CADML, have
to be customized and extended so as to be applicable

meta-

to the FB concept and contain semantics for ECCs
and algorithms. CADML can be utilized in a
subsequent step to refine the component models and
to automatically create the component assembly
descriptor.

4.3 Archimedes execution environment

The currently supported execution environment of
Archimedes is based on CIAO. CIAO is
implemented on top of TAO (Douglas, et al., 1999),
a Real-Time ORB that implements the Real-time
CORBA 1.x specification and is widely used in ma
ommercial and academic projects. Adding ext a

oS

n the following

5. CONCLUSIONS

n approach for the construction of IEC61499 FB-
subsequent

y reach in some areas, the features of

ns. Comm. of the ACM, 45,
No. 10, 65-70.

Heck, B. L. W vanos (2003).
Software Technology for Implementing

Thramboulidis, K., G. Doukas, A. Frantzis (2004).
Towards an Im for FB-based
Reconfigurabl ed Control

Wan

Wan

ny
rc

layers and operations on top of TAO results in a Q
enabled middleware but extra overhead is introduced.
However, the overhead that CIAO introduces
compared to TAO is minimal and slightly affects
throughput, jitter, and latency (Wang et al., 2004),
which are of great importance to many control
systems. The fact that the overhead introduced by
CIAO compared to TAO is minimal makes CIAO
suitable for control applications with real-time
constraints.

A daemon process of CIAO is started on each target
node to start the required component server. For the
execution of the control applicatio
process is applied on the implementation artefacts
that are produced by Archimedes ESS. The .idl and
.cidl files are processed by idl and cidl compilers to
generate stub, skeleton and component
implementation skeleton files, which are
subsequently used to generate the component’s dlls.
These dlls along with .csd and .ssd files constitute the
component’s packages. Component packages with
the .cad file are utilized by specific deployment tools
to initialize the component instances, create the
connections and initialize the control application in a
user friendly way.

A
based design models and their
transformation to CCM implementation artefacts was
described, and a prototype ESS, namely Archimedes
ESS, was presented. Archimedes demonstrates the
applicability of the proposed approach and greatly
simplifies the development process of distributed
control applications. GME, the meta modelling
toolset that was utilized to create Archimedes, was
proved very helpful in the iterative development
process of our modelling approach. It supports the
rapid design of the modelling language and its
immediate use, so hands-on experience was easily
obtained for several alternatives. The key advantage
of using GME, was that the effort needed for the
development of Archimedes was orders of magnitude
less than developing a custom-made toolset such as
CORFU FBDK. However, Archimedes is very
difficult to full

an environment, such as CORFU FBDK, that was
specifically developed for the control and automation
domain. Archimedes makes the development process
of control systems: a) more reliable since many
critical QoS aspects, such as concurrency,
distribution, transactions, security and dependability
are handled by already existing components, and b)
easier, since it separates the handling of QoS aspects
of the control application from its functional aspects.

REFERENCES

Gokhale, A., D. C Schmidt, B. Natajaran and N.
Wang (2002). Applying Model-Integrated
Computing to Component Middleware and
Enterprise Applicatio

ills and G. Vachte

Reusable, Distributed Control Systems. IEEE
Control Systems Magazine, 23, 21-35.

Ledeczi, A., M. Maroti, A. Bakay , G. Karsai, J.
Garrett, C. Thomason , G. Nordstrom, J.
Sprinkle and P. Volgyesi (2001). The Generic
Modeling Environment. Proc. of WISP’2001,
Budapest.

Lu, T., E. Turkaye, A. Gokhale, D. C. Schmidt
(2003). CoSMIC: An MDA Tool Suite for
Application Deployment and Configuration.
ACM OOPSLA Conference, Anaheim.

Schmidt, D.C., D. L. Levine, S. Mungee (1998). The
Design of the TAO Real-Time Object Request
Broker. Computer Communications, 21, No. 4,
294-324.

Schmidt, D.C. and S. Vinoski (2004). The CORBA
Component Model, Part3: The CCM Container
Architecture and Component Implementation
Framework. C/C++ Users Journal, April 2004.

Thramboulidis, K. (2004). Model Integrated
Mechatronics: An Architecture for the Model
Driven Development of Mechatronic Systems.
IEEE Int. Conf. on Mechatronics, Istanbul.

Thramboulidis, K., C. Tranoris (2004). Developing a
CASE Tool for Distributed Control
Applications. The International Journal of
Advanced Manufacturing Technology, 24,
Number 1-2, 24-31, Springer-Verlag.

plementation Model
e Distribut

Applications. 7th ΙΕΕΕ Intern. Sym. on OO Real-
time Distributed Computing, Vienna.
g, N., D. C. Schmidt and C. O’Ryan (2001).
Overview of the CORBA Component Model. In:
Component-based software engineering: putting
the pieces together (Heineman G. T., Bill
Councill. W. T. (Ed)), pp. 557-571. Addison-
Wesley, Massachusetts.
g, N., C. Gill, V. Subramonian and D. C.
Schmidt (2004). Configuring Real-Time Aspects
in Component Middleware. Conference on
Distributed Objects and Application, Cyprus.

