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Abstract: This paper considers the problem of scheduling a distributed network of 
production centers supplying a quickly perishable good that has to be produced just-in-
time and delivered within customer-specified strict time windows. The problem 
includes several planning, scheduling and routing problem, each notoriously affected by 
nearly prohibitive combinatorial complexity. Ideal solutions should provide a good 
compromise between production costs (resource utilization, delivery costs) and 
tolerance to stochastic perturbations (transport delays). We propose a novel multi-
objective meta-heuristic approach based on a hybrid genetic algorithm combined with 
constructive heuristics. The algorithm is designed to return a set of solutions with 
different cost and risk tradeoffs. The effectiveness of the approach is confirmed by a 
comparison with other recently proposed methods. Copyright 2005 IFAC 
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1. INTRODUCTION 
 
Supply networks (SN’s) can be viewed as 
organizations of partially autonomous production and 
distribution centers through which goods are 
processed and delivered to customers. The global 
operation of such complex networks involves the 
scheduling and the coordination of many activities 
within and across centers for fast and timely product 
delivery and low inventory (Luh et al., 2003). 
Effective coordination policies are particularly 
important for “just-in-time” SN’s because their flow 
of material is triggered by dynamic orders with strict 
delivery time requirements, while activities are 
strongly interrelated by technical constraints, so that 
a delay of one process may have domino effects on 
the other activities linked through precedence 
relationships or through sharing of common 
resources. From the mathematical viewpoint, the 
organization of SN activities involves a set of 
complex and interdependent combinatorial problems 
(e.g. acquisition of raw materials, scheduling of 

production facilities, routing of transport vehicles, 
etc.). Even when considered each independent from 
the other ones, the mentioned logistic problems 
suffer from a nearly prohibitive combinatorial 
complexity. On the other hand, there is a strong need 
for approaches that are capable of finding satisfactory 
solutions in short computation times, to cope with the 
unpredictable dynamic changes (new orders, delays, 
failures) that often impose a sort of continual revision 
of the planned solution.  
 
This paper considers a SN for the production and 
delivery of a quickly perishable good (ready-mixed 
concrete, RMC), which has to be produced on-
demand and delivered within strict time-windows. 
The SN consists of a network of independent 
production centers (PC’s) serving a set of distributed 
customers. Some PC’s host a fleet of trucks to deliver 
the RMC, but a few ones do not own carriers, and 
explicitly rely on the other PC’s for transportation. 
Large demands must be transported by several 
trucks, which have to be properly synchronized 



 

because the unload process at the customer site must 
be continuous (there cannot be significant pauses 
between the completion of a truck unload and the 
start of the next one). Individual PC goals are 
multifaceted. Each PC aims at organizing its 
activities so to associate high resource utilization to 
low transportation costs and timeliness of the 
deliveries, the latter being particularly crucial for the 
characteristics of the supplied good.  The problem is 
extremely complex, not only for the typical 
combinatorial complexity that is particularly 
prohibitive in such large scale systems, but also for 
the high number of constraints deriving from the 
perishable nature of RMC, and for the conflicting 
nature of the cost and timeliness objectives.  
 

At present, many companies tend either to rely on 
skilled operators that work out production plans 
basing on their experience (Matsatsinis, 2004, Feng, 
2004) or to plan production operations on short time 
horizons, sacrificing the optimization on longer term 
to reduce the risk of delayed delivery (Tommelein, 
1999). To overcome the limitations of this practice, 
this paper proposes a multi-objective approach 
combining search methods from the area of 
Evolutionary Computation (EC) with constructive 
heuristics developed for the considered case. The 
proposed method integrates the following tools:  
• A detailed model of the logistic problem that 

unambiguously specifies the decision variables 
of the problem, the technical requirements, and 
the constraints that must be fulfilled in practice. 

• A set of constructive heuristics that are able to 
process any initial assignment of the decision 
variables until a legal solution (i.e. satisfying all 
the constraints) is obtained. 

• A Multi-Objective Genetic Algorithm (MOGA) 
that seeks for the Pareto-front of solutions with 
respect to both cost- and risk-related objectives. 

The proposed approach is based on an industrial 
case-study, employing data provided by a network of 
suppliers operating in the northern part of the EU.   
 
 
2. PROBLEM AND LITERATURE OVERVIEW 

 
We consider a network of D depots or PC's 
(d∈{1,...,D} is the depot index) located in a given 
geographical area, which receive and process a set of 
R requests or orders from different customers 

(r∈{1,...,R} is request index). An order r consists of a 
customer-specified delivery time window [EDTr, 
LDTr] (earliest and latest delivery time), a required 
amount Qr, and a delivery location. The SN is also 
equipped with a fleet of K trucks (k∈{1,...,K}) to 
deliver the product to customers. If a demand 
exceeds the capacity of a single truck, it is split in a 
number of sub-demands or jobs (i∈{1,...,N} is the job 
index, and N is the total number of jobs of the SN), 
which will be delivered to customers one after the 
other. In case none of the nodes of the SN is able to 
service a certain (fraction of) demand, the production 
of the exceeding amount can be outsourced to 
external suppliers with a consequent loss of profit. 
When none of the trucks from the internal fleet is 
available for the delivery of a given order, a truck 
from an external company can be hired with 
additional costs.  
 
A detailed mathematical model has been developed 
to obtain a comprehensive formal description of the 
problem that could be used by automatic search 
techniques. For brevity, the full mathematical model 
is omitted here (most of its detail can be found in 
(Naso et al., 2004)), while the reminder of this 
section overviews some key elements. Let us define a 
task of a truck as the delivery of a job to its 
destination, and introduce the task index m∈ {1,..., 
Mk}, where Mk is the last task of truck k. We consider 
three types of binary decision variables: 
 
Xikm ∈ {0,1} if the job i is assigned to truck k as m-

th task, Xikm=1, otherwise Xikm=0. 
Yid ∈ {0,1} if job i is produced at the depot d, Yid = 

1 otherwise Yid = 0. 
Yoi ∈ {0,1} if the production of job i is outsourced, 

Yoi =1, otherwise Yoi =0. 
 
Further nomenclature about the operations of each 
truck is introduced in Fig.1, which describes the 
sequence of operation of a truck. All the time 
intervals and parameters in the model are assumed 
deterministic and known a priori.  
 
The SN scheduling must take into account several 
types of constraints, related to logic assignment of 
decision variables (e.g. a job can be assigned only 
once to one truck), to overlap prevention (e.g. a 
(un)load operation at a PC can only start when the 
previous one is ended), to RMC lifetime (the unload 
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must be completed before the RMC starts to set). A 
peculiar constraint that makes delays particularly 
dangerous in terms of domino effects is related to the 
continuity of unloading operations: 
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This condition must be fulfilled by all the jobs i 
originating from a demand split. The waiting times, 
indicated in Fig.1 as LWTkm and UWTi, are other key-
variables of the model. They represent the main idle 
times before (un)loading. Tight schedules with short 
waiting times imply better resource utilization while 
longer waiting times make the schedule more delay-
tolerant. For this reason, an user-defined lower bound 
(minimum waiting time, MWT) for all the waiting 
times is introduced in our model, and additional 
constraints are added so to ensure that all the waiting 
times are longer than the minimum allowed 
threshold. 
 
As mentioned, scheduling goals are related to 
production and delivery costs and timeliness of 
deliveries. Even assuming deterministic operation 
and transportation times, simultaneously achieving 
these two objectives is difficult. Moreover, an ideal 
schedule must be able to tolerate unpredictable 
stochastic perturbations (e.g. transportation delays 
due to traffic). Hereafter, this aspect is referred to as 
robustness of a solution. In general, cost and 
robustness are conflicting objectives because, as 
mentioned, tight schedules are also more sensitive to 
unexpected delays, especially when activities are 
tightly coupled by synchronization constraints as (1). 
On the other hand, the insertion of larger time buffers 
involves a significant cost growth since it reduces the 
actual resource utilization. Thus, the SN scheduling 
problem can be viewed as a bi-objective search 
problem in which ideal solutions are those which 
guarantee a good tradeoff between low overall costs 
and a satisfactory robustness to unpredictable delays. 
 
From the mathematical programming viewpoint, the 
production cost of a solution is the sum of three 
terms:  
 transport waiting extraC C C C= + +  (2) 

 
All the cost components depend on the decision 
variables and on the consequent schedule of all the 
activities. The transportation costs account for the 
distances traveled by all the trucks of the fleet, 
including the initial and final trips from and to the 
respective base location. The waiting costs account 
for all the truck waiting times (LWT, UWT, FIX). The 
extra costs incorporate all the additional costs related 
to outsourced production, hired trucks, and overtime 
work for truck drivers. The schedule robustness is 
estimated with the following risk index:  

 1
( )
QRF

Max Delay
= −  (3) 

 
where 
 ( ) ( )i iQ avg WT std WTα β= ⋅ − ⋅  (4) 

 
In (4) WTi is the sum of the waiting times associated 
to job i (UWT, LWT, FIX), α and β are two weighting 
factors, and avg and std are average and standard 
deviation respectively. The index Q aims at 
evaluating the way time buffers are distributed in the 
schedule. Ideally, waiting times should be 
sufficiently long and evenly distributed across the 
whole activity schedule. Thus, their average should 
be maximized and the standard deviation minimized. 
In (3), Max(Delay) is the maximal expected delay of 
a travel, which can be easily set by plant managers 
according to historical data.  
 
It can be observed that the global SN scheduling 
includes several logistic problems that have been 
extensively considered in past literature, such as the 
vehicle routing problem (VRP, Marinakis and 
Migdaleas, 2003), scheduling of parallel machines 
(Serifoglu and Ulusoy, 1999), scheduling with 
earliness/tardiness penalty (Ventura and S. 
Radhakrishnan, 2003). However, the SN size, and 
also the type and number of constraints, make 
difficult to directly apply and integrate the single 
approaches. An introductory overview of RMC 
delivery is available in (Tommelein, 1999). Similarly 
(Matsatsinis, 2004), surveys the main peculiarities of 
RMC SN’s, and focuses on vehicles (trucks and 
pumps) routing. Recent researches also propose 
approaches based on Genetic Algorithms (GA, 
Garcia et al. 2002, Feng et al. 2004). Note that these 
works consider only small-size instances, a single 
depot and an unlimited fleet of vehicles, while the 
proposed approach is devised and validated on 
problems with the same size and complexity of a 
real-world large scale SN. 
 
 

3. THE HYBRID MULTI-OBJECTIVE  
GENETIC APPROACH 

 
We search for an effective trade-off between costs 
and robustness using a MOGA. Such an algorithm is 
able to simultaneously take into account two or more 
objectives, and find a set of solutions which 
approximate the Pareto front (Deb et al. 2002). 
MOGA’s are in general more complex and 
computation-demanding than normal GA's, because 
they must perform a higher number of comparisons 
to rank individuals, and because they need specific 
mechanisms to prevent the concentration of the 
search on excessively narrow segments of the Pareto 
front (Deb et al. 2002). Due to problem size and 
complexity, using a GA to optimize all the free 
variables of the problem would involve an 
unsustainable computational cost. Thus, the GA is 



 

used in conjunction with fast local heuristics that 
permit to reach optimized solutions with short 
execution times (few minutes on a Pentium IV PC 
platform) even for the largest instances derived from 
the available data. In particular, the GA constitutes 
the main search engines, which assigns demands to 
depots (decision variables Yid ) and defines the order 
of priority by which the demands are scheduled for 
production. At every time a new solution has to be 
evaluated, the GA launches a Constructive Heuristic 
Algorithm (CHA), which starts from the assignment 
given by the GA and (1) builds schedules satisfying 
all the described constraints, (2) assigns the non-
outsourced jobs to the trucks. The overall structure of 
the search algorithm in a hi-level generic pseudo-
code is reported in Fig.2. For brevity, the next 
subsections give a short overview of the basic 
mechanisms underlying the proposed search 
algorithm.  
 
3.1. The MOGA 
The MOGA is an adapted version of the improved 
Non-Dominated Sorting GA (NSGA-II, (Deb et al. 
2003), an effective algorithm widely referred in 
technical literature. The NSGA-II is devised to 
explore continuous domain, and most of its functions 
have to be adapted to deal with our combinatorial 
problem. A first important issue regards the solution 
encoding. In our approach, each chromosome is 
made up of two separate parts, both containing R 
elements, as described in Fig.2 for R=6.  
 
Customer’s Request-

to-Depot 
Assignment  

priority of request 
in schedule 
construction  

r1 r2 r3 r4 r5 r6 p1 p2 p3 p4 p5 p6 
1 3 2 1 2 2 4 5 6 1 3 2 

Fig. 2. a single chromosome 

The first part defines the initial values for the 
decision variables Yid that assign the demands to the 
depots. At this stage of the decision process, it is 
assumed that all the jobs composing a split request 
are produced at the same PC. For instance, gene r2 
indicates that the request 2 is assigned to PC 3. The 
second part of the chromosome establishes the order 
in which the R requests are considered when building 
the schedule for the production chain (e.g. request r4 
-scheduled on PC 1- is allocated first, followed by r5 
-on PC 2- and so on). The values of all decision 
variables not assigned in the chromosome are 
computed later on by the CHA. This inner module is 
in charge of constructing a legal solution starting 
from the partial assignment of decision variables 
specified by the chromosome. New crossover and 
mutation operators have been designed for the 
specific encoding schema. Both operators randomly 
select a point in the chromosome, and apply a 
different operator if the selected point is in the first or 
in the second part of the string, always producing 
legal offspring solution. Technical details on these 
operators can be found in (Naso et al. 2004). When 

the (first) new population of solution is completed, 
the CHA is run to construct a feasible schedule from 
each chromosome. Subsequently, the two fitness 
functions, the cost C and the risk index RF, are 
computed for each individual. Then, the selection of 
the best solutions for reproduction in the next 
population is carried out with the same hybrid 
ranking/crowding based method of NSGA-II, whose 
details can be found in (Deb et al. 2002). 
 
3.2. The Constructive Heuristic Algorithm 
The CHA is composed of two main modules. The 
first one (the Depot Schedule Builder or DSB) is in 
charge of building the schedule of the production for 
all the jobs, and the second one (the Truck Schedule 
Builder or TSB) deals with the organization of the 
transport operations, i.e. it assigns jobs and routes to 
trucks. It is important to remark that these modules 
are sequential, i.e. the TSB cannot modify the PC 
schedule built by the DSB. In principle, this 
decomposition may lead to sub-optimal solution even 
though, in spite of this theoretical limitation, our 
approach always provides solutions that outperform 
the reference strategy.  
 
The DSB processes requests following the order of 
priority specified by the chromosome. For each 
demand, the DSB makes a preliminary set of 
feasibility checks (e.g. if the distance between the 
assigned PC and the customer permits the end of the 
unloading before the RMC setting time). If some 
constraints are violated, the assignment is modified 
so to overcome the cause of the violation. Then the 
DSB attempts to place the start of the loading 
window of the first job so that the SDT ends exactly 
MWT + FIX before the customer-specified EDT, 
which corresponds to a sort of ideal loading time. If 
this window overlaps with a previously assigned job, 
the DSB makes a series of attempts to overcome the 
overlaps by rearranging the job sequences without 
violating other constraints. As a result, among other 
possibilities, it may happen that some jobs are 
scheduled to be delivered earlier than the ideal 
unloading time, thus with a larger-than-desired time 
buffer. If no adjustment guarantees the feasible 
schedule of job delivery, the DSB marks the job as 
undeliverable (its scheduling will be resumed later 
on), and proceeds to place the second (or subsequent)  
job(s) of the demand to the specified PC. The 
scheduling of this second job must also consider that 
enough time must be available before the job start so 
to allow the completion of the preceding job(s). If 
also the second job cannot be assigned to the PC, the 
algorithm tries with the subsequent ones, until either 
one of the jobs is assigned to the PC, or none of the 
jobs composing a request can be scheduled on the 
PC. In the latter case (100% jobs of the request is not 
scheduled on the PC specified in the chromosome) 
the chromosome is changed and the procedure re-
examines the assignment of the request on other PC's 
in order of shortest distance from the customer's site. 
In any case, the DSB tries (if possible) to assign all 



 

the jobs of a split request to the same PC, always 
verifying that the unloading of each job can start 
exactly when the preceding one is expected to end. 
After examining all the demands, the DSB attempts 
to allocate the production of the undeliverable jobs in 
the idle time intervals of other PC's, starting from the 
nearest to the customer's site. Several insertion 
procedures are examined for each undeliverable job. 
Finally, if none of these successfully places it on a 
PC, the job has to be outsourced.  
 
Once the DSB ends its task, the TSB processes the 
truck schedule so to guarantee that a vehicle is 
available at the expected loading time of each non-
outsourced job. The TSB is a nested sequence of 
various heuristic strategies devised to optimize truck 
utilization, attempting to simultaneously minimize 
the traveled distances and the idle times. Basically, 
jobs are assigned to trucks in order of their 1

kmT . 
Trucks are considered in decreasing order of their 
Available Time (AT) defined as the time at which the 
truck can reach the PC after completing the 
preceding tasks. The assignment strategy is referred 
to as Shortest (truck) Idle Time (SIT), because it 
assigns higher preference to the latest truck that can 
arrive to the PC. In this way, it attempts to better 
exploit the truck utilization, concentrating as much as 
possible the jobs on some trucks while leaving some 
other vehicles with longer idle times. The latter ones 
can be profitably exploited to serve PC's that are not 
equipped with an internal fleet. The trucks with the 
same AT are sorted in increasing order of the distance 
from the source PC, in order to account for distance-
related cost criteria. The job is finally assigned to the 
truck by guaranteeing it will be available at least 
MWT before the scheduled job loading start. If no 
truck is available to fulfill this requirement a request 
for a hired truck is issued for the deliver of the job. 
 
 

4. THE CASE STUDY 
 

Our research investigation focuses on experimental 
data observed during several working days of a SN 
with 5 autonomous PC's located in the northern EU. 
The fleet of trucks consists of 49 vehicles housed in 
two PC's, and the customers are spread over the area 
surrounding the network of suppliers. The available 
data confirms the typical statistical distributions 
observed in similar cases (Matsatsinis, 2004). In all 
our instances the weighting factors α and β have 
been set respectively to 1 and 0.2, so to guarantee 
that the index Q is always positive, while 
Max(Delay) has been set to 90 (min.). We consider 
two other scheduling algorithms as reference policies 
for performance comparison. The first one is a 
constructive procedure that incorporates the typical 
decision criteria used by expert plant schedulers. 
Basically, this algorithm (hereafter SD-SIT) attempts 
to assigns the requests to the PC closest to customer’s 
site (Shorter Distance, SD), and the jobs to the trucks 

with the previously introduced SIT criterion. The 
second reference algorithm is a single-objective GA 
(SOGA) recently proposed in (Naso et al. 2004). This 
GA is designed to address only cost minimization, 
and uses a different version of the CHA. The two 
algorithms were recently compared with several 
other heuristic strategies (Naso et al. 2004) on 
problem instances of differing complexity. The SD-
SIT was in all the considered cases the best non-
evolutionary approach, while the SOGA was always 
able to outperform all the other methods.  
 
We consider a reference instance describing a typical 
busy working day of the SN, with 71 requests split in 
more than 300 jobs. The main configuration and cost 
parameters used in the decision problem are 
summarized in Table I. All the considered algorithms 
are run multiple times, with gradually increasing 
values of the MWT. In this way, different solutions 
are found with increasing costs and robustness to 
delays. Differently from SD-SIT and SOGA, each 
returning only one solution, the MOGA provides a 
Pareto-front of non-dominated solutions describing 
different tradeoffs between cost and robustness. For 
an immediate comparison, Table II and III report the 
values of the cost and risk objectives of the two 
solutions in the extremes of the front (those with the 
minimum cost and minimum risk, respectively), 
while Fig.3 provides a graphical comparison using 
the two objectives as Cartesian axes for the case of 
MWT=15mins. 

Table I: cost parameters and configuration of the 
algorithm 

cost for each Km of travel of the trucks 10 
penalty for idle time 15 
loss of income for m3 of concrete to outsource 2000 
cost of an hired truck 10000 
extra pay for truck drivers' overtime minute 5 
population size (randomly generated) 100 
termination condition (calls to CHA) 2500 
crossover rate 33% 
mutation rate 33% 

Table II: risk function for the case study 
Algorithm \ 
MWT  

SD/SIT SOGA MOGA 
high cost 

MOGA 
low cost 

5 0.856 0.877 0.799 0.862 
10 0.795 0.823 0.739 0.813 
15 0.751 0.769 0.695 0.762 
20 0.691 0.724 0.638 0.691 
25 0.634 0.649 0.597 0.644 
30 0.584 0.606 0.546 0.601 

Table III: cost function for the case study 
Algorithm \ 
MWT  

SD/SIT SOGA MOGA 
high cost 

MOGA 
low cost 

5 492301 432665 686512 457210 
10 612462 550178 786999 545475 
15 690891 609210 860848 627810 
20 809216 706759 938815 728630 
25 905416 811440 963676 826405 
30 981239 896618 1081105 897000 
 
As in the case reported in Fig.3, the solutions found 
by SD-SIT are always dominated by those of the 
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Fig. 3. A comparative analysis of the algorithms 
 
MOGA. In some cases, the SD-SIT yields solutions 
that have the same overall cost of those found by the 
MOGA with shorter values of MWT, a circumstance 
that indicates that significantly better solutions can be 
obtained by using the proposed multi-objective 
approach. For what concerns the SOGA, it is able to 
provide solutions whose costs are sometimes lower 
than those found in the front of the MOGA (for a 
given value of the MWT, the SOGA solution often 
lies near the upper-left side of the front, as in Fig.3). 
These solutions have in general a high value of the 
RF, and thus are potentially useful only for cases in 
which it can be guaranteed that any delay will never 
exceed the given value of the MWT. To obtain a 
further validation of the actual performance offered 
by the considered policies, a discrete-event 
simulation model of the SN has been developed, in 
which truck routes are subject to stochastic delays of 
variable distribution. The investigation confirmed 
that the probability of critical events (e.g. the loss of 
RMC loads for excessive delay, the discontinuous 
unload of large demands, etc.) is significantly 
reduced in the solutions with low risk index.  
 
 

5. CONCLUSIONS  
 
We have considered a novel meta-heuristic approach 
based on a multi-objective evolutionary algorithm 
combined with constructive heuristics for addressing 
production and delivery with time constraints on both 
the earliness and the lateness of supply. Our 
experimental investigation shows that such a hybrid 
approach is able to provide an effective scheduling 
algorithm based on a detailed model of the network. 
The comparison of the multi-objective method with 
other heuristic algorithms has confirmed the 
potentialities of the proposed method on two counts. 
Firstly, the user is provided with a set of different 
schedules, each corresponding to a different ratio of 
production cost and tolerance to unexpected delays. 
Secondly, the multi-objective approach is able to 
obtain a satisfactory tradeoff front in the same 
execution time of the other single-objective 
heuristics, which can be made short enough to 
perform real-time rescheduling in case new orders 
are received during the working day (the current 

prototypes of the GA codes are programmed in 
Matlab language and take about 15 minutes to 
converge on a PC Pentium based platform). Besides 
the extension to the case of dynamic rescheduling, 
the current research is focused on the fusion of DSB 
and TSB in an integrated procedure, on the 
development of discrete-event simulation tools for 
the automatic detection of critical parts of the 
schedules, and an improved strategic allocation of 
time buffers of variable size.  
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