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Abstract: The problem of making the output insensitive to an exogenous input
signal possibly known with preview is tackled in the geometric approach context.
The definition of minimal preview for decoupling is introduced. Necessary and
sufficient constructive conditions for decoupling with minimal preview are proved
by means of simple geometric arguments. The structural and the stabilizability
conditions are considered separately. The minimal complexity of the solution is
guaranteed by using the minimal self-bounded controlled invariant subspace. In the
presence of unstable dynamics of that subspace, a steering along zeros technique
completely devised in the state-space allows the solution with internal stability to
be nonetheless achieved. Implementation is obtained by resorting to finite impulse
response systems. Copyright c©2005 IFAC
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1. INTRODUCTION

Perfect decoupling, in the sense of com-
plete rejection of exogenous input signals,
and perfect tracking are difficult problems
when nonminimum-phase systems are involved
(Davison and Scherzinger, 1987; Qiu and Davi-
son, 1993). Hence, a great deal of research effort
has been directed towards these issues and it has
been found that troubles concerned with internal
stability can be overcome by accepting to face
noncausal problems, where the signals to be local-
ized or tracked are known in advance (Devasia et
al., 1996; Hunt et al., 1996). Thus, several papers
have been written on how to achieve noncausal
inversion, first considering SISO systems (Gross et
al., 1994; Tsao, 1994; Marro and Fantoni, 1996)
and, more recently, addressing MIMO systems
both in the linear (Zou and Devasia, 1999; Marro
et al., 2002) and in the nonlinear case (Zeng and
Hunt, 2000). These papers focused on so-called

steering along zeros techniques, mainly devised
in the transfer function approach. In this paper,
we deal with the problem of decoupling for lin-
ear multivariable systems in the strict geometric
context, i.e. all the arguments are set in the state
space and the structural and stabilizability prop-
erties of controlled and conditioned invariant sub-
spaces play a key role in achieving necessary and
sufficient conditions for the exact solution to exist.
In particular, the use of the minimal self-bounded
controlled invariant subspace to treat stability is-
sues allows us to achieve a sharper insight into
connections between nonmimum-phase systems
and noncausal problems. Moreover, when the min-
imal self-bounded controlled invariant subspace is
stabilizable, it is useful to introduce the notion of
minimal preview for decoupling.

According to a procedure well-settled in the ge-
ometric approach, the structural and the stabi-
lizability conditions for decoupling are considered



separately. On the assumption that the structural
condition holds, two different situations must be
considered depending on the stabilizability prop-
erties of the system: i) decoupling can be achieved
exactly, provided that a ‘short’ preview of the
exogenous signal is available, minimal preview ;
ii) decoupling can be achieved exactly, provided
that a ‘theoretically infinite’ preview of the exoge-
nous signal is given, infinite preview . To be more
specific, while the structural condition for de-
coupling with preview — H⊆V∗ +S∗ (Willems,
1982; Imai et al., 1983) — is the natural extension
of the structural condition for measurable signal
decoupling — H⊆V∗ +B (Bhattacharyya, 1974)
— which extends, in turn, that for unaccessi-
ble signal decoupling — H⊆V∗ (Wonham and
Morse, 1970; Wonham, 1985) —, as far as the
stabilizability condition is concerned, we refer to
that based on the use of the minimal self-bounded
controlled invariant subspace satisfying the struc-
tural constraint — Vm =V∗ ∩minS(A, C,B+H)
internally stabilizable — and we show that this
is valid not only in the case of unaccessible or
measurable exogenous signals (Basile and Marro,
1982; Schumacher, 1983; Basile et al., 1984; Basile
and Marro, 1992), but also in the case where
the signals to be localized are known in advance.
Hence, if both the structural and the stabilizabil-
ity conditions hold, then, exact decoupling can
be achieved by means of the sole minimal pre-
view, whose length is connected to the number
of steps of the algorithm for S∗, the minimal
(A, C)-conditioned invariant containing B. Other-
wise, if the structural condition holds but the sta-
bilizability condition does not, it is herein shown
that it is nonetheless possible to achieve decou-
pling of the exogenous signals with internal sta-
bility, provided that these are known in advance
with infinite preview. Indeed, infinite preview is
not necessary in practice: a preview sufficiently
longer than the longest time-constant associated
to the internal unassignable eigenvalues of Vm

enables the problem to be solved with practically
acceptable accuracy.

In the above-described context, it is worth point-
ing out some substantial technical differences be-
tween our approach and others dealing with signal
decoupling. The first feature of our work is of a
theoretical nature and concerns the use of Vm

for checking stabilizability. In fact, in (Imai et
al., 1983; Wonham, 1985), the controlled invariant
considered for stability is V∗

g , the maximal inter-
nally stabilizable (A,B)-controlled invariant con-
tained in C. According to (Basile and Marro, 1982;
Schumacher, 1983), here we consider Vm, the
minimal internally stabilizable (A,B)-controlled
invariant self-bounded with respect to C. Since
an internally stabilizable Vm is contained in V∗

g ,
assuming Vm in place of V∗

g has the advantage

of yielding a control system with the minimum
number of internal unassignable dynamics. More-
over, the analysis based on the use of Vm better
clarifies the connections between steering along
techniques and nonminimum-phase systems: since
Vm ⊆V∗, Vm may be not internally stabilizable
if the system is nonminimum-phase. However,
nonminimum-phase systems may not require infi-
nite preview if the unstable internal unassignable
eigenvalues of V∗ are external to Vm. The second
relevant feature of our work is connected with im-
plementation: the control laws steering the states
of the controlled system along trajectories defined
by the unstable internal unassignable eigenvalues
of Vm are produced by precompensators including
nonconventional control devices like finite impulse
response (FIR) systems: the convolution profiles
consist of the unstable trajectories recorded back-
wards in time.

2. DECOUPLING WITH MINIMAL PREVIEW

The discrete time-invariant linear system

x(k + 1) = Ax(k) + B u(k) + H h(k), (1)

y(k) = C x(k), (2)

is considered, with state x∈R
n, control input

u∈R
p, controlled output y ∈R

q and exogenous
input h∈R

s (either unaccessible, or measurable,
or known with preview). Matrices B, H, and C are
assumed to be full-rank. The standard notation
of the geometric approach is assumed (Basile and
Marro, 1992). In this section, some basic results
on unaccessible and measurable signal decoupling
with stability are first recalled. Then, the problem
of previewed signal decoupling with stability is
stated and the main theorem concerning its so-
lution is proved. Finally, the notion of minimal
preview for decoupling is introduced.
Problem 1. (Unaccessible Signal Decoupling with
Stability) Consider system (1),(2). Let x(0)= 0.
Design a linear algebraic state feedback F such
that σ(A+ BF )⊂C

� and, for all admissible
h(t) (t≥ 0), y(t)= 0 for all t≥ 0.

Theorem 1. (Unaccessible Signal Decoupling with
Stability) (Basile and Marro, 1982; Schumacher,
1983; Basile et al., 1984; Basile and Marro, 1992)
Consider system (1), (2). Let (A,B) be stabi-
lizable. Problem 1 is solvable if and only if:
i) H⊆V∗; ii) Vm =V∗ ∩minS(A, C,B+H) is in-
ternally stabilizable.

Problem 2. (Measurable Signal Decoupling with
Stability) Consider system (1), (2). Let x(0)= 0.
Design a linear algebraic state feedback F and
a linear algebraic feedforward S of the measur-
able exogenous input h on the control input u



such that σ(A+ BF )⊂C
� and, for all admissible

h(t) (t≥ 0), y(t)= 0 for all t≥ 0.

Theorem 2. (Measurable Signal Decoupling with
Stability) (Basile and Marro, 1992) Consider sys-
tem (1), (2). Let (A,B) be stabilizable. Prob-
lem 2 is solvable if and only if: i) H⊆V∗ +B;
ii) Vm =V∗ ∩minS(A, C,B+H) is internally sta-
bilizable.

Problem 3. (Previewed Signal Decoupling with
Stability) Consider system (1), (2). Let σ(A)⊂C

�.
Let x(0)= 0. Let h(k) be known with preview of
kp steps, ρM ≤ kp <∞. Design a linear dynamic
feedforward compensator (Ac, Bc, Cc,Dc), having
hp(k)= h(k + kp) as input, such that σ(Ac)⊂C

�

and, for all admissible h(t) (t≥ 0), y(t)= 0 for all
t≥ 0.

Lemma 1. For any Q⊆R
n,

min S(A, C,B + Q) = min S(A, C,S∗ + Q).

Proof: By construction, the subspaces gen-
erated by the standard algorithms for the min-
imal (A, C)-conditioned invariant subspaces re-
spectively containing B+Q and B satisfy the in-
clusions S ′

1 =B+Q⊇S1 =B and

S ′
i = A(S ′

i−1 ∩ C) + B + Q ⊇
Si = A(Si−1 ∩ C) + B,

for i= 2, 3, . . . , ρM , where ρM is the num-
ber of steps for evaluating S∗. These algo-
rithms do not necessarily converge within the
same number of steps, but the last inclusion
implies min S(A, C,B+Q)⊇S∗. Hence, it im-
plies min S(A, C,B+Q)⊇S∗ +B+Q⊇S∗ +Q.
The latter inclusion means that min S(A, C,B+Q)
is an (A, C)-conditioned invariant containing
S∗ +Q, therefore

min S(A, C,B+Q)⊇ min S(A, C,S∗ +Q).

On the other hand, B+Q⊆S∗ +Q implies

min S(A, C,B+Q)⊆ min S(A, C,S∗ +Q).

Theorem 3. (Previewed Signal Decoupling with
Stability) Problem 3 is solvable if and only if:
i) H⊆V∗ +S∗; ii) Vm =V∗ ∩ min S(A, C,B + H)
is internally stabilizable.

Proof: Since condition i) is well settled in
the literature (Willems, 1982; Imai et al., 1983),
this proof will focus on condition ii).

If. First note that, owing to condition i),
subspaces HS∗ ⊆S∗ and HV∗ ⊆V∗ exist such
that H=HS∗ +HV∗ . By superposition, assum-
ing h(k)= ei δ(k− ρM ), with k = 0, 1, . . . and
ei (i= 0, 1, . . . , s) denoting the generic i-th vector
of the main basis of R

s, does not cause any loss
of generality. The input h(k) is assumed to be

previewed of ρM time instants. Let τ be defined
as τ = H ei δ(k− ρM ) with k = ρM . Then, τ can
be expressed as τ = τS∗ + τV∗ with τS∗ ∈HS∗ and
τV∗ ∈HV∗ . The decomposition of τ as τS∗ and
τV∗ is not unique if HS∗ ∩HV∗ 
= {0}, which may
occur if the system is not left-invertible, but the
arguments herein presented hold for any decom-
position considered. By definition of S∗, any state
belonging to HS∗ can be reached from the origin
in ρM steps at most, along a trajectory belonging
to C, therefore invisible at the output, until the
last step but one. Hence, the component τS∗ can
be nulled by applying the control input sequence
driving the state from the origin to its opposite,
−τS∗ . On the other hand, the component τV∗ can
be localized on V∗, since both the conditions of
Theorem 1 are satisfied. In fact, HV∗ ⊆V∗ by
construction, and V∗ ∩ min S(A, C,B + HV∗) is
internally stabilizable since Vm is internally sta-
bilizable by assumption and, by Lemma 1,

V∗ ∩ min S(A, C,B + HV∗)

= V∗ ∩ min S(A, C,S∗ + HV∗)

= V∗ ∩ min S(A, C,S∗ + H)

= V∗ ∩ min S(A, C,B + H)

= Vm.

Only if. If H 
⊆V∗ +S∗, then the effect of the
input h(k) cannot be made invisible at the out-
put because of the maximality of the respective
subspaces V∗ and S∗. In fact, V∗ is the maximal
set of initial states in C corresponding to trajecto-
ries indefinitely controllable on C, while S∗ is the
maximal set of states that can be reached from
the origin in a finite number of steps with all
the intermediate states in C except the last. On
the other hand, if the structural condition holds,
but Vm is not internally stabilizable, since Vm is
the minimal (A,B+H)-controlled invariant self-
bounded with respect to C, no internally stabiliz-
able (A,B)-controlled invariant V exists satisfying
both V ⊆C and H⊆V +S∗.

Remark 1. In Theorem 3, the assumption of sta-
bility of A is not restrictive with respect to those
of stabilizability of (A,B) and detectability of
(A,C) usually considered. On these hypotheses, a
stable system can be obtained by dynamic output
feedback according to the block diagram shown in
Fig. 1. In (Marro and Zattoni, 2004), it was proved
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Fig. 1. Block diagram for prestabilization.



hp(k) =
h(k + kp)

kp-delay
h(k)
u(k) Σ

Σc

y(k)

Fig. 2. Block diagram for previewed signal decou-
pling.

that in the extended state space of the stabilized
system, the internal unassignable eigenvalues of
the minimal self-bounded controlled invariant are
the same as those in the state space of the original
system.

Definition 1. (Minimal Preview for Decoupling).
Consider system (1),(2). Let conditions i) and
ii) of Theorem 3 hold. Let Si be the generic
i-th subspace of the sequence for the computa-
tion of S∗, i.e. S1 =B, Si = A (Si−1 ∩C)+B, with
i= 2, . . . , ρM , and ρM being the minimal integer
such that SρM+1 =SρM

. The minimal preview for
decoupling is defined as ρ− 1, where ρ is the least
integer such that H⊆V∗ +Sρ holds.

The block diagram for previewed signal decou-
pling with stability if the conditions of Theorem 3
are satisfied is shown in Fig. 2. The block Σ stands
for the system (1),(2), Σc for the feedforward com-
pensator (Ac, Bc, Cc,Dc), and the block ‘kp-delay’
for a cascade of kp unit delays inserted on the in-
put h signal flow to model its preview of kp steps.
According to Definition 1, the preview kp = ρ is
sufficient to solve the problem.

3. DECOUPLING WITH INFINITE
PREVIEW: AN ALGORITHMIC SETTING

In this section, an algorithmic solution to a re-
laxed version of Problem 3 is devised, where the
preview available is not necessarily finite and
the precompensator Σc is not necessarily a stan-
dard dynamic system defined by a quadruple
(Ac, Bc, Cc,Dc). By releasing these constraints,
theoretically perfect decoupling with stability can
be achieved also in the presence of unstable inter-
nal unassignable eigenvalues of Vm. In this case,
the precompensator should include not only a
dynamic unit reproducing the stable dynamics
associated to the motion on Vm and the dead-
beat associated to the motion on S∗, but it should
also include a convolution unit reproducing the
unstable dynamics associated to the motion on
Vm. In practice, the convolution is truncated and
the additional unit working in connection with
the standard dynamic unit is an FIR system. In
order to guarantee a negligible truncation error,
the preview kp, which is equal to the length of the

FIR window, should be sufficiently longer than the
longest time constant associated to the unstable
internal unassignable eigenvalues of Vm. The algo-
rithmic procedure herein presented encompasses
also the case of decoupling with minimal preview
as a special case. The structural condition of
Theorem 3, namely H⊆V∗ +S∗, is assumed to
be satisfied. Two different strategies are outlined
according to whether the stabilizability condition
is satisfied or not: in the former case, the minimal
preview is required to obtain exact decoupling,
in the latter an infinite preview is theoretically
demanded.

The algorithmic setting presented in this section
is built on the following basic concepts of the
geometric approach. Recall that Vm is a locus
of initial states in C corresponding to trajecto-
ries indefinitely controllable in C and that S∗ is
the maximal set of states that can be reached
from the origin in ρM steps along trajectories
with all the intermediate states in C. Then, sup-
pose that an impulse is applied to the input h
at the time ρM , thus producing a component
of the state xh ∈H, which is decomposable as
xh = xh,S + xh,V , with xh,S ∈S∗ and xh,V ∈Vm —
note that H⊆Vm +S∗ is implied by the struc-
tural condition (Basile and Marro, 1982; Schu-
macher, 1983; Basile and Marro, 1992). The com-
ponent xh,S can be nulled by applying the control
sequence that drives the state from the origin to
−xh,S along a trajectory in S∗. The component
xh,V can be maintained on Vm by a suitable
control action in the time interval ρM ≤ k <∞
while avoiding state divergence, if all the internal
unassignable modes of Vm are stable (or stabi-
lizable). Otherwise, xh,V must be further decom-
posed as xh,V = xh,VS

+ xh,VU
, with xh,VS

belong-
ing to the subspace of the stable (or stabilizable)
internal modes of Vm and xh,VU

belonging to
that of the unstable modes. The former compo-
nent can be maintained on Vm, avoiding state
divergence, by a suitable control action in the
time interval ρM ≤ k <∞, while the latter can be
nulled by reaching −xh,VU

with a control action,
applied in the time interval −∞< k≤ ρM − 1, cor-
responding to a trajectory in Vm from the origin.
The hypothesis that Vm does not have internal
unassignable eigenvalues on the unit circle is re-
quired in order to discriminate between stable
and unstable modes when Vm is not internally
stabilizable. Moreover, Algorithms 1 and 2 re-
quire that system (1),(2) is left-invertible with
respect to the control input. Algorithm 3 is a
means to deal with non left-invertible systems.
Algorithms 1 and 2 provide the control and state
sequences for motions on S∗ and Vm, respec-
tively, assuming h(k)= I δ(k− ρM ). This partic-
ular choice of the input h directly yields the FIR
system convolution profiles and the matrices of



the dynamic unit. Matrix H must be decomposed
as H =V H ′

1 + SH ′
2, where V and S denote basis

matrices of Vm and S∗, respectively. Let F be such
that (A+ BF )Vm ⊆Vm and let T = [V S T1] be
a state space basis transformation. The system
matrices in the new basis have the structures

A′ =

⎡
⎣ A′

11 A′
12 A′

13

0 A′
22 A′

23

0 A′
32 A′

33

⎤
⎦ , (3)

B′ =

⎡
⎣ 0

B′
2

0

⎤
⎦ , H ′ =

⎡
⎣ H ′

1

H ′
2

0

⎤
⎦ , (4)

C ′ =
[
0 C ′

2 C ′
3

]
, F ′ =

[
F ′

1 F ′
2 F ′

3

]
. (5)

Algorithm 1. (Motion on S∗). The controls U1(k),
k = 0, . . . , ρM − 1, and the corresponding states
X1(k), k = 1, . . . , ρM , are derived through the fol-
lowing steps.

1. Compute basis matrices Mi of the subspace
Si ∩C for i= 1, . . . , ρM − 1.

2. Compute the sequences β(i) and U1(i),
i= 1, . . . , ρM − 1, as
[

β(ρM − j)
U1(ρM − j)

]
=

[
AMρM−j B

]#
MρM−j+1β(ρM − j + 1),

for j = 1, . . . , ρM − 1, with MρM
=S and

β(ρM )=−H ′
2.

3. Compute U1(0) driving the states from the
origin to M1β(1) as

U1(0)= B#M1 β(1).

4. Compute the states X1(i), i= 1, . . . , ρM , as

X1(i)= Mi β(i), i= 1, . . . , ρM .

Algorithm 2. (Motion on Vm). Two strategies are
outlined depending on whether Vm is internally
stabilizable or not.

1. If Vm is internally stabilizable, the motion
on Vm is provided by the pair (A′

11,H
′
1)

in (3),(4), i.e. the states restricted to R
nV ,

nV = dim(Vm), are

X2(ρM + i)= (A′
11)

i
H ′

1, i= 0, 1, . . . ,

and the controls are

U2(ρM + i)= F ′
1 (A′

11)
i
H ′

1, i= 0, 1, . . . .

2. If Vm is not internally stabilizable, a second
state space basis transformation T ′, whose
aim is to separate the stable and unstable
modes of Vm, is required. The matrices A′′

11,
H ′′

1 and F ′′
1 , respectively corresponding to

A′
11, H ′

1 and F ′
1 in the new basis, have the

structures

A′′
11 =

[
AS 0
0 AU

]
, H ′′

1 =
[

HS

HU

]
,

F ′′
1 =

[
FS FU

]
.

A preaction, nulling the unstable component
of the state HU at the time instant ρM

must be computed backwards through the
matrix AU . The states restricted to R

nu ,
nu = dim(VU

m), are

X3(ρM − j)=−A−j
U HU , j = 0, 1, . . . ,

and the controls are

U3(ρM − j)=−FUA−j
U HU , j = 1, . . . .

The stable component of the state HS is
managed as in the case of Vm stabilizable.

Algorithms 1 and 2 directly yield the compen-
sator. If all the internal modes of Vm are stable,
decoupling is achieved by means of the minimal
preaction (dead-beat, motion on S∗) and postac-
tion (motion on Vm along the stable zeros). The
first can be obtained as the output of a ρM -step
FIR system with suitable convolution profiles, the
latter can be realized as the output of a stable
dynamic unit. Hence, the compensator turns out
to be the parallel of a ρM -step FIR system and a
dynamic unit. The FIR system is

uF(k) =
ρM−1∑
�=0

Φ(�)h(k − �), k = 0, 1, . . . , (6)

with Φ(�)= U1(�), �= 0, . . . , ρM − 1. The dynamic
unit is

w(k + 1) = N w(k) + Lh(k − ρM ), k = 0, 1, ..,(7)

uD(k) = M w(k), (8)

where N =A′
11, L= H ′

1, M =F ′
1. Hence, the con-

trol input is u(k)= uF(k)+ uD(k), k = 0, 1, . . .. As
aforementioned, in this case, the precompensator
achieving perfect decoupling with stability can
also be implemented as a unique standard dy-
namic unit (Ac, Bc, Cc,Dc) also including the FIR
system. Otherwise, if unstable modes are also
present in Vm, infinite preview is required. The
evolution of the state along the unstable modes
of Vm can only be computed backwards in time
and reproduced through a convolutor with an
infinitely large window. In practice, an FIR sys-
tem is considered, whose window should be large
enough to make the truncation error negligible.
In conclusion, to achieve perfect decoupling with
stability in the presence of unstable unassignable
internal eigenvalues of Vm a convolutor with an
infinitely large window would be required and this
cannot be reduced to a standard dynamic unit



(Ac, Bc, Cc,Dc). However, practical implementa-
tion requirements introduce truncation, which im-
plies that: i) only an approximate solution is
achievable in practice; ii) the convolution unit
with truncated profile can be implemented as an
FIR system, which, in the discrete-time case, can
be reduced to a quadruple (Ac, Bc, Cc,Dc) with
a peculiar structure. In this case, (6) is modified
into

uF(k) =
ρM−1∑
�=−ka

Φ(�)h(k − �), k = 0, 1, . . . , (9)

with Φ(�)= U1(�)+ U3(�), �= − ka, . . . , ρM − 1,
(with a slight abuse of notation the control se-
quences are assumed to be zero wherever they are
not explicitly defined). The dynamic unit is de-
scribed by (7),(8) with N =AS , L= HS , M = FS .
If the triple (A,B,C) is not left-invertible, the pre-
vious procedure can be applied anyhow, provided
that a preliminary manipulation is performed to
obtain a left-invertible triple and the results thus
obtained are adapted to fit the original system.

Algorithm 3. (Extension to Non Left-Invertible
Systems) (Marro and Zattoni, 2004; Marro and
Zattoni, 2005). If the triple (A,B,C) is not left-
invertible, the previous procedure should be ap-
plied to (A∗, B∗, C), with

1. A∗ =A+ BF ∗, where F ∗ is a state feedback
matrix such that (A+ BF ∗)V∗ ⊆V∗ and all
the elements of σ(A+ BF ∗)|RV∗ are stable;

2. B∗ = B U∗, where U∗ is a basis matrix of
the subspace U∗ = (B−1 V∗)⊥, the orthogo-
nal complement of the inverse image of V∗

with respect to B.

Let Ūi(k) and X̄i(k), with i= 1, 2, 3 and k con-
sistently defined, be the sequences of controls
and states provided by Algorithms 1 and 2 ap-
plied to (A∗, B∗, C). The corresponding control
sequences for (A,B,C) must be computed as
Ui(k)= U∗Ūi(k)+ F ∗X̄i(k), i= 1, 2, 3.

4. CONCLUSIONS

The problem of making the output totally insensi-
tive to an exogenous input signal has been solved
in the geometric context. Necessity of previewing
the signal to be decoupled has been precisely re-
lated to structural and stabilizability properties of
the system.
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