A SUM OF SQUARES APPROXIMATION OF NONNEGATIVE POLYNOMIALS

Jean B. Lasserre

LAAS-CNRS 7 Avenue du Colonel Roche, 31077 Toulouse, France

Abstract: We show that every real nonnegative polynomial f can be approximated as closely as desired by a sequence of polynomials $\{f_{\epsilon}\}$ that are sums of squares. Each f_{ϵ} has a simple and explicit form in terms of f and ϵ . Copyright ©2005 IFAC

Keywords: Nonnegative polynomials, sums of squares.

1. INTRODUCTION

The study of relationships between *nonnegative* and sums of squares (s.o.s.) polynomials, initiated by Hilbert, is of real practical importance in view of numerous potential applications, notably in polynomial programming. Indeed, checking whether a given polynomial is nonnegative is a NP-hard problem whereas checking it is s.o.s. reduces to solving a (convex) Semidefinite Programming (SDP) problem for which efficient algorithms are now available. For instance, recent results in real algebraic geometry, most notably in [Schmüdgen, 1991], [Putinar, 1993], [Jacobi and Prestel, 2001] have provided s.o.s. representations of polynomials, positive on a compact semialgebraic set; the interested reader is referred to [Prestel and Delzell, 2001], and [Scheiderer, 2003] for a nice account of such results. This in turn has permitted to develop efficient SDP-relaxations in polynomial optimization; see e.g. [Lasserre, 2001, 2002], [Parrilo, 2003], [Schweighofer, 2004], and the many references therein. See also [Henrion and Lasserre, 2004] for control applications.

So, back to a comparison between nonnegative and s.o.s. polynomials, on the negative side, [Blekherman, 2004] has shown that if the degree is *fixed*, then the cone of nonnegative polynomials is much *larger* than that of s.o.s. However, on the positive side, a denseness result states that the cone of s.o.s. polynomials is *dense* in the space of polynomials that are nonnegative on $[-1, 1]^n$ (for the norm $||f||_1 = \sum_{\alpha} |f_{\alpha}|$ whenever f is written $\sum_{\alpha} f_{\alpha} x^{\alpha}$ in the usual canonical basis); see e.g. Theorem 5, p. 122 in [Berg, 1980].

Contribution. We show that every nonnegative polynomial f is almost a s.o.s., namely we show that f can be approximated by a sequence of s.o.s. polynomials $\{f_{\epsilon}\}_{\epsilon}$, in the specific form

$$f_{\epsilon} = f + \epsilon \sum_{k=0}^{r_{\epsilon}} \sum_{j=1}^{n} \frac{x_j^{2k}}{k!}, \qquad (1)$$

for some $r_{\epsilon} \in \mathbb{N}$, so that $||f - f_{\epsilon}||_1 \to 0$ as $\epsilon \downarrow 0$.

This result is in the spirit of the previous denseness result. However we here provide in (1) an *explicit* converging approximation with a very specific (and simple) form; namely it suffices to slightly perturbate f by adding a small coefficient $\epsilon > 0$ to each square monomial x_i^{2k} for all $i = 1, \ldots, n$ and all $k = 1, \ldots, r$, with r sufficiently large.

To prove this result we combine

- (generalized) **Carleman**'s sufficient condition for a moment sequence $\mathbf{y} = \{y_{\alpha}\}$ to have a *representing measure* μ (i.e., such that $y_{\alpha} = \int x^{\alpha} d\mu$ for all $\alpha \in \mathbb{N}^n$), and

- a **duality** result from convex optimization.

As a consequence, we may thus define a procedure to approximate the global minimum of a polynomial f. It consists in solving a sequence of SDPrelaxations which are simpler and easier to solve than those defined in [Lasserre, 2001].

2. NOTATION AND DEFINITIONS

For a real symmetric matrix A, the notation $A \succeq 0$ (resp. $A \succ 0$) stands for A positive semidefinite (resp. positive definite). The sup-norm $\sup_i |x_i|$ of a vector $x \in \mathbb{R}^n$, is denoted by $||x||_{\infty}$. Let $\mathbb{R}[x_1,\ldots,x_n]$ be the ring of real polynomials, and let

$$v_r(x) := (1, x_1, \dots, x_n, x_1^2, x_1 x_2, \dots, x_n^r) \qquad (2)$$

be the canonical basis for the \mathbb{R} -vector space \mathcal{A}_r of real polynomials of degree at most r, and let s(r) be its dimension. Similarly, $v_{\infty}(x)$ denotes the canonical basis of $\mathbb{R}[x_1, \ldots, x_n]$ as a \mathbb{R} -vector space, denoted \mathcal{A} . So a vector in \mathcal{A} has always finitely many zeros.

Therefore, a polynomial $p \in \mathcal{A}_r$ is written

$$x \mapsto p(x) = \sum_{\alpha} p_{\alpha} x^{\alpha} = \langle \mathbf{p}, v_r(x) \rangle, \qquad x \in \mathbb{R}^n,$$

(where $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$) for some vector $\mathbf{p} =$ $\{p_{\alpha}\} \in \mathbb{R}^{s(r)}$, the vector of coefficients of p in the basis (2).

Extending \mathbf{p} with zeros, we can also consider \mathbf{p} as a vector indexed in the basis $v_{\infty}(x)$ (i.e. $\mathbf{p} \in \mathcal{A}$). If we equip \mathcal{A} with the usual scalar product $\langle ., . \rangle$ of vectors, then for every $p \in \mathcal{A}$,

$$p(x) = \sum_{\alpha > \in \mathbb{N}^n} p_{\alpha} x^{\alpha} = \langle \mathbf{p}, v_{\infty}(x) \rangle, \qquad x \in \mathbb{R}^n.$$

Given a sequence $\mathbf{y} = \{y_{\alpha}\}$ indexed in the basis $v_{\infty}(x)$, let $L_{\mathbf{y}}: \mathcal{A} \to \mathbb{R}$ be the linear functional

$$p \mapsto L_{\mathbf{y}}(p) := \sum_{\alpha \in \mathbb{N}^n} p_{\alpha} y_{\alpha} = \langle \mathbf{p}, \mathbf{y} \rangle.$$

Given a sequence $\mathbf{y} = \{y_{\alpha}\}$ indexed in the basis $v_{\infty}(x)$, the moment matrix $M_r(\mathbf{y}) \in \mathbb{R}^{s(r) \times s(r)}$ with rows and columns indexed in the basis $v_r(x)$ in (2), satisfies

$$[M_r(\mathbf{y})(1,j) = y_\alpha \text{ and } M_r(y)(i,1) = y_\beta]$$

$$\Rightarrow M_r(y)(i,j) = y_{\alpha+\beta}.$$

For instance, with n = 2,

$$M_{2}(\mathbf{y}) = \begin{bmatrix} y_{00} \ y_{10} \ y_{01} \ y_{20} \ y_{11} \ y_{30} \ y_{21} \ y_{12} \\ y_{10} \ y_{20} \ y_{11} \ y_{30} \ y_{21} \ y_{12} \\ y_{01} \ y_{11} \ y_{02} \ y_{21} \ y_{12} \ y_{03} \\ y_{20} \ y_{30} \ y_{21} \ y_{40} \ y_{31} \ y_{22} \\ y_{11} \ y_{21} \ y_{12} \ y_{31} \ y_{22} \ y_{13} \\ y_{02} \ y_{12} \ y_{03} \ y_{22} \ y_{13} \ y_{04} \end{bmatrix}.$$

٦

A sequence $\mathbf{y} = \{y_{\alpha}\}$ has a *representing* measure $\mu_{\mathbf{y}}$ if

$$y_{\alpha} = \int_{\mathbb{R}^n} x^{\alpha} \, d\mu_{\mathbf{y}}, \qquad \forall \, \alpha \in \mathbb{N}^n.$$
 (3)

In this case one also says that \mathbf{y} is a *moment* sequence. In addition, if $\mu_{\mathbf{y}}$ is unique then \mathbf{y} is said to be a *determinate* moment sequence.

The matrix $M_r(\mathbf{y})$ defines a bilinear form $\langle ., . \rangle_{\mathbf{v}}$ on \mathcal{A}_r , by

$$\langle q, p \rangle_{\mathbf{y}} := \langle \mathbf{q}, M_r(\mathbf{y}) \mathbf{p} \rangle = L_{\mathbf{y}}(qp), \quad q, p \in \mathcal{A}_r,$$

and if **y** has a *representing* measure $\mu_{\mathbf{y}}$ then

$$\langle \mathbf{q}, M_r(\mathbf{y})\mathbf{q} \rangle = \int_{\mathbb{R}^n} q(x)^2 \,\mu_{\mathbf{y}}(dx) \ge 0, \qquad (4)$$

so that $M_r(\mathbf{y}) \succeq 0$.

Next, given a sequence $\mathbf{y} = \{y_{\alpha}\}$ indexed in the basis $v_{\infty}(x)$, let $y_{2k}^{(i)} := L_{\mathbf{y}}(x_i^{2k})$ for every $i = 1, \ldots, n$ and every $k \in \mathbb{N}$. That is, $y_{2k}^{(i)}$ denotes the element in the sequence y, corresponding to the monomial x_i^{2k} .

Of course not every sequence $\mathbf{y} = \{y_{\alpha}\}$ has a representing measure $\mu_{\mathbf{y}}$ as in (3). However, there exists a *sufficient* condition to ensure that it is the case. The following result stated in [Berg, 1980] is from [Nussbaum, 1966], and is re-stated here, with our notation.

Theorem 1. Let $\mathbf{y} = \{y_{\alpha}\}$ be an infinite sequence such that $M_r(\mathbf{y}) \succeq 0$ for all $r = 0, 1, \dots$ If

$$\sum_{k=0}^{\infty} (\mathbf{y}_{2k}^{(i)})^{-1/2k} = \infty, \qquad i = 1, \dots, n, \qquad (5)$$

then **y** is a determinate moment sequence.

The condition (5) in Theorem 1 is called *Carle*man's condition as it extends to the multivariate case the original Carleman's sufficient condition given for the univariate case.

3. PRELIMINARIES

Let B_M be the closed ball

$$B_M = \{ x \in \mathbb{R}^n \mid \|x\|_{\infty} \le M \}.$$
 (6)

Proposition 2. Let $f \in \mathbb{R}[x_1, \ldots, x_n]$ be such that $-\infty < f^* := \inf_x f(x)$. Then, for every $\epsilon > 0$ there is some $M_{\epsilon} \in \mathbb{N}$ such that

$$f_M^* := \inf_{x \in B_M} f(x) < f^* + \epsilon, \qquad \forall M \ge M_\epsilon.$$

Equivalently, $f_M^* \downarrow f^*$ as $M \to \infty$.

PROOF. Suppose it is false. That is, there is some $\epsilon_0 > 0$ and an infinite sequence sequence $\{M_k\} \subset \mathbb{N}$, with $M_k \to \infty$, such that $f_{M_k}^* \ge f^* + \epsilon_0$ for all k. But let $x_0 \in \mathbb{R}^n$ be such that $f(x_0) < f^* + \epsilon_0$. With any $M_k \ge ||x_0||_{\infty}$, one obtains the contradiction $f^* + \epsilon_0 \le f_{M_k}^* \le f(x_0) < f^* - \epsilon_0$.

To prove our main result (Theorem 5 below), we first introduce the following related optimization problems.

$$\mathbb{P}: \qquad f^* := \inf_{x \in \mathbb{R}^n} f(x), \tag{7}$$

and for $0 < M \in \mathbb{N}$, the problem \mathcal{P}_M

$$\inf_{\mu \in \mathcal{P}(\mathbb{R}^n)} \left\{ \int f \, d\mu \, | \quad \int \sum_{i=1}^n \mathrm{e}^{\mathbf{x}_i^2} \, \mathrm{d}\mu \le \mathrm{ne}^{\mathrm{M}^2} \right\}, \quad (8)$$

where $\mathcal{P}(\mathbb{R}^n)$ is the space of probability measures on \mathbb{R}^n . The respective optimal values of \mathbb{P} and \mathcal{P}_M are denoted inf $\mathbb{P} = f^*$ and inf \mathcal{P}_M , or min \mathbb{P} and min \mathcal{P}_M if the minimum is attained.

Proposition 3. Let $f \in \mathbb{R}[x_1, \ldots, x_n]$ be such that $-\infty < f^* := \inf_x f(x)$, and consider the two optimization problems \mathbb{P} and \mathcal{P}_M defined in (7) and (8) respectively. Then, $\inf \mathcal{P}_M \downarrow f^*$ as $M \to \infty$. If f has a global minimizer $x^* \in \mathbb{R}^n$, then $\min \mathcal{P}_M = f^*$ whenever $M \ge \|x^*\|_{\infty}$.

PROOF. Let $\mu \in \mathcal{P}(\mathbb{R}^n)$ be admissible for \mathcal{P}_M . As $f \geq f^*$ on \mathbb{R}^n then it follows immediately that $\int f d\mu \geq f^*$, and so, $\inf \mathcal{P}_M \geq f^*$ for all M.

As B_M is closed and bounded, it is compact and so, with f_M^* as in Proposition 2, there is some $\hat{x} \in B_M$ such that $f(\hat{x}) = f_M^*$. In addition let $\mu \in \mathcal{P}(\mathbb{R}^n)$ be the Dirac probability measure at the point \hat{x} . As $\|\hat{x}\|_{\infty} \leq M$,

$$\int \sum_{i=1}^{n} e^{x_i^2} d\mu = \sum_{i=1}^{n} e^{(\hat{x}_i)^2} \le n e^{M^2},$$

so that μ is an admissible solution of \mathcal{P}_M with value $\int f d\mu = f(\hat{x}) = f_M^*$, which proves that inf $\mathcal{P}_M \leq f_M^*$. This latter fact, combined with Proposition 2 and with $f^* \leq \inf \mathcal{P}_M$, implies inf $\mathcal{P}_M \downarrow f^*$ as $M \to \infty$, the desired result. The final statement is immediate by taking as feasible solution for \mathcal{P}_M , the Dirac probability measure at the point $x^* \in B_M$ (with $M \geq ||x^*||_{\infty}$). As its value is now f^* , it is also optimal, and so, \mathcal{P}_M is solvable with optimal value min $\mathcal{P}_M = f^*$.

Proposition 3 provides a rationale for introducing the following Semidefinite Programming (SDP) problems. Let $2r_f$ be the degree of f and for every $r_f \leq r \in \mathbb{N}$, consider the SDP problem

$$\mathbb{Q}_{r} \begin{cases}
\min_{\mathbf{y}} L_{\mathbf{y}}(f) \left(=\sum_{\alpha} f_{\alpha} y_{\alpha}\right) \\
\text{s.t. } M_{r}(\mathbf{y}) \succeq 0 \\
\sum_{k=0}^{r} \sum_{i=1}^{n} \frac{y_{2k}^{(i)}}{k!} \leq n e^{M^{2}}, \\
y_{0} = 1,
\end{cases}$$
(9)

and its associated dual SDP problem

$$\mathbb{Q}_{r}^{*} \begin{cases}
\max_{\lambda \geq 0, \gamma, q} \gamma - n e^{M^{2}} \lambda \\
\text{s.t. } f - \gamma = q - \lambda \sum_{k=0}^{r} \sum_{j=1}^{n} \frac{x_{j}^{2k}}{k!} \\
q \quad \text{s.o.s. of degree } \leq 2r,
\end{cases}$$
(10)

with respective optimal values inf \mathbb{Q}_r and $\sup \mathbb{Q}_r^*$ (or $\min \mathbb{Q}_r$ and $\max \mathbb{Q}_r^*$ if the optimum is attained, in which case the problems are said to be solvable). For more details on SDP theory, the interested reader is referred to the survey paper [VandenBerghe and Boyd, 1996].

The SDP problem \mathbb{Q}_r is a relaxation of \mathcal{P}_M , and we next show that in fact

- \mathbb{Q}_r is solvable for all $r \geq r_0$,

- its optimal value $\min \mathbb{Q}_r \to \inf \mathcal{P}_M$ as $r \to \infty$, and

- \mathbb{Q}_r^* is also solvable with same optimal value as \mathbb{Q}_r , for every $r \ge r_f$.

This latter fact will be crucial to prove our main result in the next section. Let l_{∞} (resp. l_1) be the Banach space of bounded (resp. summable) infinite sequences with the sup-norm (resp. the l_1 -norm).

Theorem 4. Let $f \in \mathbb{R}[x_1, \ldots, x_n]$ be of degree $2r_f$, with global minimum $f^* > -\infty$, and let M > 0 be fixed. Then :

(i) For every $r \ge r_f$, \mathbb{Q}_r is solvable, and $\min \mathbb{Q}_r \uparrow$ inf \mathcal{P}_M as $r \to \infty$.

(ii) Let $\mathbf{y}^{(r)} = \{y_{\alpha}^{(r)}\}$ be an optimal solution of \mathbb{Q}_r and complete $\mathbf{y}^{(r)}$ with zeros to make it an element of l_{∞} . Every (pointwise) accumulation point \mathbf{y}^* of the sequence $\{\mathbf{y}^{(r)}\}_{r\in\mathbb{N}}$ is a determinate moment sequence, that is,

$$y_{\alpha}^{*} = \int_{\mathbb{R}^{n}} x^{\alpha} d\mu^{*}, \qquad \alpha \in \mathbb{N}^{n},$$
(11)

for a unique probability measure μ^* , and μ^* is an optimal solution of \mathcal{P}_M .

(iii) For every $r \ge r_f$, $\max \mathbb{Q}_r^* = \min \mathbb{Q}_r$.

For a proof see [Lasserre, 2004].

So, one can approximate the optimal value f^* of \mathbb{P} as closely as desired, by solving SDP-relaxations $\{\mathbb{Q}_r\}$ for sufficiently large values of r and M. Indeed, $f^* \leq \inf \mathcal{P}_M \leq f_M^*$, with f_M^* as in Proposition 2. Therefore, let $\epsilon > 0$ be fixed, arbitrary. By Proposition 3, we have $f^* \leq \inf \mathcal{P}_M \leq f^* + \epsilon$ provided that M is sufficiently large. Next, by Theorem 4(i), one has $\inf \mathbb{Q}_r \geq \inf \mathcal{P}_M - \epsilon$ provided that r is sufficiently large, in which case, we finally have $f^* - \epsilon \leq \inf \mathbb{Q}_r \leq f^* + \epsilon$.

Notice that the SDP-relaxation \mathbb{Q}_r in (9) is simpler than the one defined in [Lasserre, 2001]. Both have the same variables $\mathbf{y} \in \mathbb{R}^{s(r)}$, but the former has one SDP constraint $M_r(\mathbf{y}) \succeq 0$ and one scalar inequality (as one substitutes y_0 with 1) whereas the latter has the same SDP constraint $M_r(\mathbf{y}) \succeq 0$ and one additional SDP constraint $M_{r-1}(\theta \mathbf{y}) \succeq 0$ for the localizing matrix associated with the polynomial $x \mapsto \theta(x) = M^2 - ||x||^2$. This results in a significant simplification.

4. SUM OF SQUARES APPROXIMATION

Let \mathcal{A} be equipped with the norm

$$f \mapsto ||f||_1 := \sum_{\alpha \in \mathbb{N}^n} |f_{\alpha}|, \qquad f \in \mathcal{A}.$$

Theorem 5. Let $f \in \mathbb{R}[x_1, \ldots, x_n]$ be nonnegative with global minimum f^* , that is,

$$0 \le f^* \le f(x), \qquad x \in \mathbb{R}^n.$$

(i) There is some $r_0 \in \mathbb{N}, \lambda_0 \ge 0$ such that, for all $r \ge r_0$ and $\lambda \ge \lambda_0$,

$$f + \lambda \sum_{k=0}^{r} \sum_{j=1}^{n} \frac{x_j^{2k}}{k!} \qquad \text{is a sum of squares.} \quad (12)$$

(ii) For every $\epsilon > 0$, there is $r_{\epsilon} \in \mathbb{N}$ such that,

$$f_{\epsilon} := f + \epsilon \sum_{k=0}^{r_{\epsilon}} \sum_{j=1}^{n} \frac{x_j^{2k}}{k!} \qquad \text{is a sum of squares.} (13)$$

Hence, $||f - f_{\epsilon}||_1 \to 0$ as $\epsilon \downarrow 0$.

For a proof see [Lasserre, 2004].

Remark 6. Theorem 5(ii) is a denseness result in the spirit of Theorem 5, p. 122 in [Berg, 1980] which states that the cone of s.o.s. polynomials is dense (also for the norm $||f||_1$) in the cone of polynomials that are nonnegative on $[-1, 1]^n$. However, notice that Theorem 5(ii) provides an *explicit* converging sequence $\{f_{\epsilon}\}$ with a simple and very specific form. **Ex:** Let $f \in \mathbb{R}[x, y]$ be the Motzkin polynomial

$$(x,y) \mapsto f(x,y) := 1 + x^4y^2 + x^2y^4 - 3x^2y^2.$$

Then, as proved by B. Reznick,

$$f + (n-1)^{n-1} (xy)^{2n} / n^n$$
, is s.o.s. $\forall n \ge 3$.

REFERENCES

- Berg C. (1980). The multidimensional moment problem and semi-groups, Proc. Symp. Appl. Math., 37:110–124.
- Blekherman G. (2004). There are significantly more nonnegative polynomials than sums of squares, Department of Mathematics, University of Michigan, Ann Arbor, USA.
- Henrion D. and Lasserre J. B. (2004). Solving nonconvex optimization problems, *IEEE Contr.* Syst. Mag., 24:72–83.
- Jacobi T. and Prestel A. (2001). Distinguished representations of strictly positive polynomials, J. Reine. Angew. Math., 532:223–235.
- Lasserre J. B. (2001). Global optimization with polynomials and the problem of moments, *SIAM J. Optim.*, 11:796–817.
- Lasserre J. B. (2002). Semidefinite programming vs. LP relaxations for polynomial programming, *Math. Oper. Res.*, 27:347–360.
- Lasserre J. B. (2004). A sum of squares approximation of nonnegative polynomials, *Report #* 04428, July, LAAS-CNRS, Toulouse, France.
- Nussbaum A. E. (1966). Quasi-analytic vectors, Ark. Mat., 6:179–191.
- Parrilo P. A. (2000). Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, PhD thesis, Caltech, Pasadena, CA, USA.
- Parrilo P. A. (2003). Semidefinite programming relaxations for semialgebraic problems, *Math. Prog. Ser. B*, 96:293–320.
- Prestel A. and Delzell C. N. (2001). *Positive Polynomials*, Springer, Berlin.
- Putinar M. (1993). Positive polynomials on compact semi-algebraic sets, *Indiana Univ. Math.* J., 42:969–984.
- Scheiderer C. (2003). Positivity and sums of squares: A guide to some recent results, Department of Mathematics, University of Duisburg, Germany.
- Schmüdgen K. (1991). The K-moment problem for compact semi-algebraic sets, Math. Ann., 289:203–206.
- Schweighofer M. (2004). Optimization of polynomials on compact semialgebraic sets, SIAM J. Optim, to appear.
- Vandenberghe L. and Boyd S. (1996). Semidefinite programming, SIAM Review, 38:49-95.