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1. INTRODUCTION

The study of relationships between nonnegative
and sums of squares (s.o.s.) polynomials, initi-
ated by Hilbert, is of real practical importance
in view of numerous potential applications, no-
tably in polynomial programming. Indeed, check-
ing whether a given polynomial is nonnegative is
a NP-hard problem whereas checking it is s.o.s.
reduces to solving a (convex) Semidefinite Pro-
gramming (SDP) problem for which efficient al-
gorithms are now available. For instance, recent
results in real algebraic geometry, most notably
in [Schmüdgen, 1991], [Putinar, 1993], [Jacobi and
Prestel, 2001] have provided s.o.s. representations
of polynomials, positive on a compact semialge-
braic set; the interested reader is referred to [Pres-
tel and Delzell, 2001], and [Scheiderer, 2003] for
a nice account of such results. This in turn has
permitted to develop efficient SDP-relaxations in
polynomial optimization; see e.g. [Lasserre, 2001,
2002], [Parrilo, 2003], [Schweighofer, 2004], and
the many references therein. See also [Henrion and
Lasserre, 2004] for control applications.

So, back to a comparison between nonnegative
and s.o.s. polynomials, on the negative side,
[Blekherman, 2004] has shown that if the degree
is fixed, then the cone of nonnegative polynomials
is much larger than that of s.o.s. However, on the
positive side, a denseness result states that the

cone of s.o.s. polynomials is dense in the space of
polynomials that are nonnegative on [−1, 1]n (for
the norm ‖f‖1 =

∑
α |fα| whenever f is written∑

α fαx
α in the usual canonical basis); see e.g.

Theorem 5, p. 122 in [Berg, 1980].

Contribution. We show that every nonnegative
polynomial f is almost a s.o.s., namely we show
that f can be approximated by a sequence of s.o.s.
polynomials {fε}ε, in the specific form

fε = f + ε

rε∑
k=0

n∑
j=1

x2k
j

k!
, (1)

for some rε ∈ N, so that ‖f − fε‖1 → 0 as ε ↓ 0.

This result is in the spirit of the previous dense-
ness result. However we here provide in (1) an
explicit converging approximation with a very
specific (and simple) form; namely it suffices to
slightly perturbate f by adding a small coeffi-
cient ε > 0 to each square monomial x2k

i for all
i = 1, . . . , n and all k = 1, . . . , r, with r sufficiently
large.

To prove this result we combine

- (generalized) Carleman’s sufficient condition
for a moment sequence y = {yα} to have a
representing measure µ (i.e., such that yα =∫
xαdµ for all α ∈ Nn), and

- a duality result from convex optimization.



As a consequence, we may thus define a procedure
to approximate the global minimum of a polyno-
mial f . It consists in solving a sequence of SDP-
relaxations which are simpler and easier to solve
than those defined in [Lasserre, 2001].

2. NOTATION AND DEFINITIONS

For a real symmetric matrix A, the notation A � 0
(resp. A � 0) stands for A positive semidefinite
(resp. positive definite). The sup-norm supj |xj |
of a vector x ∈ R

n, is denoted by ‖x‖∞. Let
R[x1, . . . , xn] be the ring of real polynomials, and
let

vr(x) := (1, x1, . . . xn, x
2
1, x1x2, . . . , x

r
n) (2)

be the canonical basis for the R-vector space Ar
of real polynomials of degree at most r, and let
s(r) be its dimension. Similarly, v∞(x) denotes
the canonical basis of R[x1, . . . , xn] as a R-vector
space, denoted A. So a vector in A has always
finitely many zeros.

Therefore, a polynomial p ∈ Ar is written

x 7→ p(x) =
∑
α

pαx
α = 〈p, vr(x)〉, x ∈ Rn,

(where xα = xα1
1 xα2

2 . . . xαnn ) for some vector p =
{pα} ∈ Rs(r), the vector of coefficients of p in the
basis (2).

Extending p with zeros, we can also consider p as
a vector indexed in the basis v∞(x) (i.e. p ∈ A).
If we equip A with the usual scalar product 〈., .〉
of vectors, then for every p ∈ A,

p(x) =
∑

α>∈Nn
pαx

α = 〈p, v∞(x)〉, x ∈ Rn.

Given a sequence y = {yα} indexed in the basis
v∞(x), let Ly : A → R be the linear functional

p 7→ Ly(p) :=
∑
α∈Nn

pαyα = 〈p,y〉.

Given a sequence y = {yα} indexed in the basis
v∞(x), the moment matrix Mr(y) ∈ Rs(r)×s(r)
with rows and columns indexed in the basis vr(x)
in (2), satisfies

[Mr(y)(1, j) = yα and Mr(y)(i, 1) = yβ ]

⇒ Mr(y)(i, j) = yα+β .

For instance, with n = 2,

M2(y) =


y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 .

A sequence y = {yα} has a representing measure
µy if

yα =
∫
Rn

xα dµy, ∀α ∈ Nn. (3)

In this case one also says that y is a moment
sequence. In addition, if µy is unique then y is
said to be a determinate moment sequence.

The matrix Mr(y) defines a bilinear form 〈., .〉y
on Ar, by

〈q, p〉y := 〈q,Mr(y)p〉 = Ly(qp), q, p ∈ Ar,

and if y has a representing measure µy then

〈q,Mr(y)q〉 =
∫
Rn

q(x)2 µy(dx) ≥ 0, (4)

so that Mr(y) � 0.

Next, given a sequence y = {yα} indexed in
the basis v∞(x), let y

(i)
2k := Ly(x2k

i ) for every
i = 1, . . . , n and every k ∈ N. That is, y(i)

2k denotes
the element in the sequence y, corresponding to
the monomial x2k

i .

Of course not every sequence y = {yα} has a
representing measure µy as in (3). However, there
exists a sufficient condition to ensure that it is the
case. The following result stated in [Berg, 1980] is
from [Nussbaum, 1966], and is re-stated here, with
our notation.

Theorem 1. Let y = {yα} be an infinite sequence
such that Mr(y) � 0 for all r = 0, 1, . . .. If

∞∑
k=0

(y(i)
2k )−1/2k = ∞, i = 1, . . . , n, (5)

then y is a determinate moment sequence.

The condition (5) in Theorem 1 is called Carle-
man’s condition as it extends to the multivariate
case the original Carleman’s sufficient condition
given for the univariate case.

3. PRELIMINARIES

Let BM be the closed ball

BM = {x ∈ Rn | ‖x‖∞ ≤ M}. (6)

Proposition 2. Let f ∈ R[x1, . . . , xn] be such that
−∞ < f∗ := infx f(x). Then, for every ε > 0
there is some Mε ∈ N such that

f∗M := inf
x∈BM

f(x) < f∗ + ε, ∀M ≥ Mε.



Equivalently, f∗M ↓ f∗ as M →∞.

PROOF. Suppose it is false. That is, there is
some ε0 > 0 and an infinite sequence sequence
{Mk} ⊂ N, with Mk →∞, such that f∗Mk

≥ f∗ +
ε0 for all k. But let x0 ∈ Rn be such that f(x0) <
f∗ + ε0. With any Mk ≥ ‖x0‖∞, one obtains the
contradiction f∗ + ε0 ≤ f∗Mk

≤ f(x0) < f∗ − ε0.

To prove our main result (Theorem 5 below), we
first introduce the following related optimization
problems.

P : f∗ := inf
x∈Rn

f(x), (7)

and for 0 < M ∈ N, the problem PM

inf
µ∈P(Rn)

{∫
f dµ |

∫ n∑
i=1

ex2
i dµ ≤ neM2

}
, (8)

where P(Rn) is the space of probability measures
on Rn. The respective optimal values of P and PM
are denoted inf P = f∗ and inf PM , or minP and
minPM if the minimum is attained.

Proposition 3. Let f ∈ R[x1, . . . , xn] be such that
−∞ < f∗ := infx f(x), and consider the two
optimization problems P and PM defined in (7)
and (8) respectively. Then, inf PM ↓ f∗ as M →
∞. If f has a global minimizer x∗ ∈ Rn, then
minPM = f∗ whenever M ≥ ‖x∗‖∞.

PROOF. Let µ ∈ P(Rn) be admissible for PM .
As f ≥ f∗ on Rn then it follows immediately that∫
fdµ ≥ f∗, and so, inf PM ≥ f∗ for all M .

As BM is closed and bounded, it is compact and
so, with f∗M as in Proposition 2, there is some
x̂ ∈ BM such that f(x̂) = f∗M . In addition let
µ ∈ P(Rn) be the Dirac probability measure at
the point x̂. As ‖x̂‖∞ ≤M ,∫ n∑

i=1

ex2
i dµ =

n∑
i=1

e(x̂i)
2
≤ neM2

,

so that µ is an admissible solution of PM with
value

∫
f dµ = f(x̂) = f∗M , which proves that

inf PM ≤ f∗M . This latter fact, combined with
Proposition 2 and with f∗ ≤ inf PM , implies
inf PM ↓ f∗ as M → ∞, the desired result. The
final statement is immediate by taking as feasible
solution for PM , the Dirac probability measure at
the point x∗ ∈ BM (with M ≥ ‖x∗‖∞). As its
value is now f∗, it is also optimal, and so, PM is
solvable with optimal value minPM = f∗.

Proposition 3 provides a rationale for introducing
the following Semidefinite Programming (SDP)

problems. Let 2rf be the degree of f and for every
rf ≤ r ∈ N, consider the SDP problem

Qr



min
y

Ly(f) (=
∑
α

fαyα)

s.t. Mr(y) � 0
r∑

k=0

n∑
i=1

y
(i)
2k

k!
≤ neM2

,

y0 = 1,

(9)

and its associated dual SDP problem

Q
∗
r


max
λ≥0,γ,q

γ − neM2
λ

s.t. f − γ = q − λ
r∑

k=0

n∑
j=1

x2k
j

k!

q s.o.s. of degree ≤ 2r,

(10)

with respective optimal values inf Qr and supQ∗r
(or minQr and maxQ∗r if the optimum is at-
tained, in which case the problems are said to
be solvable). For more details on SDP theory, the
interested reader is referred to the survey paper
[VandenBerghe and Boyd, 1996].

The SDP problem Qr is a relaxation of PM , and
we next show that in fact

- Qr is solvable for all r ≥ r0,

- its optimal value minQr → inf PM as r → ∞,
and

- Q∗r is also solvable with same optimal value as
Qr, for every r ≥ rf .

This latter fact will be crucial to prove our main
result in the next section. Let l∞ (resp. l1) be
the Banach space of bounded (resp. summable)
infinite sequences with the sup-norm (resp. the
l1-norm).

Theorem 4. Let f ∈ R[x1, . . . , xn] be of degree
2rf , with global minimum f∗ > −∞, and let
M > 0 be fixed. Then :

(i) For every r ≥ rf , Qr is solvable, and minQr ↑
inf PM as r →∞.

(ii) Let y(r) = {y(r)
α } be an optimal solution of

Qr and complete y(r) with zeros to make it an
element of l∞. Every (pointwise) accumulation
point y∗ of the sequence {y(r)}r∈N is a determi-
nate moment sequence, that is,

y∗α =
∫
Rn

xα dµ∗, α ∈ Nn, (11)

for a unique probability measure µ∗, and µ∗ is an
optimal solution of PM .

(iii) For every r ≥ rf , maxQ∗r = minQr.

For a proof see [Lasserre, 2004].



So, one can approximate the optimal value f∗ of P
as closely as desired, by solving SDP-relaxations
{Qr} for sufficiently large values of r and M .
Indeed, f∗ ≤ inf PM ≤ f∗M , with f∗M as in Propo-
sition 2. Therefore, let ε > 0 be fixed, arbitrary.
By Proposition 3, we have f∗ ≤ inf PM ≤ f∗ + ε
provided that M is sufficiently large. Next, by
Theorem 4(i), one has inf Qr ≥ inf PM − ε pro-
vided that r is sufficiently large, in which case, we
finally have f∗ − ε ≤ inf Qr ≤ f∗ + ε.

Notice that the SDP-relaxation Qr in (9) is sim-
pler than the one defined in [Lasserre, 2001]. Both
have the same variables y ∈ Rs(r), but the former
has one SDP constraint Mr(y) � 0 and one scalar
inequality (as one substitutes y0 with 1) whereas
the latter has the same SDP constraint Mr(y) � 0
and one additional SDP constraint Mr−1(θy) � 0
for the localizing matrix associated with the poly-
nomial x 7→ θ(x) = M2 − ‖x‖2. This results in a
significant simplification.

4. SUM OF SQUARES APPROXIMATION

Let A be equipped with the norm

f 7→ ‖f‖1 :=
∑
α∈Nn

|fα|, f ∈ A.

Theorem 5. Let f ∈ R[x1, . . . , xn] be nonnegative
with global minimum f∗, that is,

0 ≤ f∗ ≤ f(x), x ∈ Rn.

(i) There is some r0 ∈ N, λ0 ≥ 0 such that, for all
r ≥ r0 and λ ≥ λ0,

f + λ
r∑

k=0

n∑
j=1

x2k
j

k!
is a sum of squares. (12)

(ii) For every ε > 0, there is rε ∈ N such that,

fε := f + ε

rε∑
k=0

n∑
j=1

x2k
j

k!
is a sum of squares.(13)

Hence, ‖f − fε‖1 → 0 as ε ↓ 0.

For a proof see [Lasserre, 2004].

Remark 6. Theorem 5(ii) is a denseness result in
the spirit of Theorem 5, p. 122 in [Berg, 1980]
which states that the cone of s.o.s. polynomials
is dense (also for the norm ‖f‖1) in the cone
of polynomials that are nonnegative on [−1, 1]n.
However, notice that Theorem 5(ii) provides an
explicit converging sequence {fε} with a simple
and very specific form.

Ex: Let f ∈ R[x, y] be the Motzkin polynomial

(x, y) 7→ f(x, y) := 1 + x4y2 + x2y4 − 3x2y2.

Then, as proved by B. Reznick,

f + (n− 1)n−1(xy)2n/nn, is s.o.s. ∀n ≥ 3.
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