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Abstract: This paper deals with state observation of discrete time LPV systems
in the special situation when the parameters are not exactly known (estimated
with a finite accuracy or affected by noise or bounded disturbances during their
measurement). In ((Millerioux et al., 2004)), it was shown that despite of the
resulting mismatch between the true parameters and the available ones, the state
reconstruction error boundedness can be guaranteed and an explicit but possibly
conservative bound can be derived. The objective here is to propose a procedure
in order to improve the gap between this bound and the actual one. The main
result consists in a convex optimization problem which allows to select among all
possible polytopic observers the one which minimizes the observation error bound
in the steady state. Copyright c©2005 IFAC.
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1. INTRODUCTION

Linear Parameter Varying (LPV) systems have
received considerable attention by the automatic
control researchers (Shamma and Athans, 1991),
(Becker and Packard, 1994), (Apkarian and Gahinet,
1995), (Scherer, 1996)... Usually, in the context of
LPV systems and gain scheduling strategies, the
parameters are assumed to be available online and
exactly known. For practical reasons, this can not
be the case and one may have to use a parameter
estimator (determined for example by standard
nonlinear identification techniques) and causing a
bounded estimation error. Also, even if measuring
the parameters is possible, one may be faced with

bounded disturbances on the dynamics and/or
the measurements. That’s why investigating the
situation where the time-varying parameters are
estimated with a given accuracy or affected by
noise and bounded disturbances during the mea-
surement is a challenging problem.

As far as uncertain systems are considered,
estimation problems have been considered in
(Geromel et al., 2002) (de Oliveira and Geromel,
2003), (Barbosa et al., 2002)... To our knowledge,
among the published papers related to LPV prob-
lems where the controller or the observer is sched-
uled without assuming real-time availability of all



the parameters, only (Kose and Jabbari, 1997)
addressed a problem similar to the one presented
here. In (Kose and Jabbari, 1997), partly mea-
sured parameters have been considered. The LPV
system is assumed to depend on time-varying real
uncertain parameters and only some of the pa-
rameters are exactly known and available for feed-
back. A rank minimization algorithm with LMI
constraints has been proposed for dynamic output
feedback design. Here, we assume that all the
parameters are not exactly known. We consider
a parameter dependent observer where instead of
using the exact values of the parameters, only
estimated (or uncertain but bounded) values can
be used. It was proved in (Millerioux et al., 2004)
that an explicit bound on the state reconstruction
error can be derived by using the concept of Input-
to-State Stability (ISS) (Sontag, 1989). However,
the main drawback states in the fact that the
gap between the provided bound and the real one
can be large. Here, we propose a modification to
the state observer design procedure which allows
to minimize the provided bound and hence to
reduce the gap between the obtained bound and
the actual one.

We mention that the problem under study differs
from the one involving adaptive approaches where
the goal is to simultaneously estimate the state
and the parameters. The design often requires the
use of a global state space diffeomorphism such
that, in the new coordinates, the nonlinearities are
restricted to be functions of available signals and
the system becomes linear with respect to both
state and parameters (Bastin and Gevers, 1988).
It can be shown that the effect of a bounded esti-
mation error is similar to the effect of a bounded
unknown exogenous input acting on the system.
And yet, it is well known that a bounded distur-
bance may drive to infinity a nonlinear system
(Marino et al., 2001). That’s why analyzing the
impact of the parameter estimation error (or the
parameter uncertainty) on the state reconstruc-
tion error is an interesting problem.

This paper is organized as follows. In section 2, we
give the problem statement and recall the main
contribution of (Millerioux et al., 2004) which
consists in giving an explicit bounded on the
state reconstruction error despite of the parameter
estimation error using the concept of Input-to-
State Stability. Section 3 gives the main result
that is a convex optimization problem where the
minimization of the bound is included in the ob-
server design procedure. Finally, the improvement
provided by this solution is illustrated through
the same numerical example used in (Millerioux
et al., 2004).

Notation : R
n, the real n-vectors; MT , the trans-

pose of the matrix M ; λmin(M), λmax(M), the
minimum and maximum eigenvalue of the real
matrix M = MT , ‖xk‖, the usual Euclidean norm√

xT
k xk of the vector xk; ‖x‖∞, the supremum

norm sup
k≥0

‖xk‖ of a discrete sequence x; ‖M‖, the

spectral norm
√

λmax(MT M) of the matrix M .

2. PROBLEM STATEMENT

We consider LPV discrete-time systems given by :

{
xk+1 = A(ρk)xk + Buk

yk = Cxk + Duk
(1)

where xk ∈ R
n, yk ∈ R

m, uk ∈ R
r, A ∈ R

n×n,
B ∈ R

n×r, C ∈ R
m×n, D ∈ R

m×r. It is
assumed that the discrete trajectory x(., x0) with
initial state x0 is bounded, that is ‖x‖∞ < ∞.
Some usual assumptions and considerations for
LPV systems are recalled. In particular, A is
of class C1 with respect to the entries of a L-
dimensional time-varying parameter vector ρk =
(ρ1

k, . . . , ρL
k )T bounded in a hypercube Θ. For a

general parameter dependence of the system and a
general parameter dependent Lyapunov function,
it is known that controllers or observers design
may lead to a convex but infinitely constrained
problem (ElGhaoui and Niculescu, 2000). Thus,
one usually must resort to ”gridding” the range
of all admissible values of the parameter in order
to obtain a finite set of constraints. To overpass
it, a solution consists in carrying out a polytopic
decomposition. Indeed, since ρk is valued in the
hypercube Θ, A lies in a compact set which can
always be embedded in a polytope, that is :

A(ρk) =
N∑

i=1

ξi
k(ρk)Ai (2)

where the Ai’s correspond to the vertices of
the convex hull Co{A1, . . . , AN}. The ξk’s be-
long to the compact set S = {µk ∈ R

N , µk =
(µ1

k, . . . , µN
k )T , µi

k ≥ 0 ∀i and
∑N

i=1 µi
k = 1} and

they can always be expressed as functions of class
C1 with respect to the ρk’s. Such a decomposition
turns the design problem into the resolution of a
finite set of constraints involving only the vertices
of the convex hull.

Here, we focus on the situation where the true
parameter ρk is actually not available but it is as-
sumed that an estimator provides at each discrete-
time k an estimated ρ̂k fulfilling ‖ρk − ρ̂k‖∞ < ∆.
It is a typical situation when the estimator results
from standard nonlinear identification techniques



based upon learning machines. Obviously, it in-
cludes the case where ρk = ρ∗, a constant value.

For the reconstruction of the state xk, the follow-
ing so-called polytopic observer is proposed.{

x̂k+1 = A(ρ̂k)x̂k + Buk + L(ρ̂k)(yk − ŷk)
ŷk = Cx̂k + Duk

(3)
with A(ρ̂k) =

∑N
i=1 ξ̂i

k(ρ̂k)Âi, ξ̂i
k ∈ S, Âi ∈

Co{Â1, . . . , ÂN}, L being a time-varying gain
defined by L(ρ̂k) =

∑N
i=1 ξ̂i

k(ρ̂k)Li. The Li’s are
some constant gains to be computed.
The motivation of such an observer stems from the
fact that, for the polytopic decomposition (2) and
a perfect estimation corresponding to ρ̂k = ρk and
so Co{Â1, . . . , ÂN} = Co{A1, . . . , AN}, a global
convergence of the state reconstruction error is
obtained. On one hand, from (1) and (3), it is easy
to see that for ρk = ρ̂k, the state reconstruction
error εk

�
= xk − x̂k is governed by the dynamics :

εk+1 = A(ρk)εk (4)

with A(ρk) =
∑N

i=1 ξi
k(ρk)Ãi and

Ãi = Ai − LiC

Following similar details as in (Daafouz and
Bernussou, 2001), one can build the observer gain
matrices and ensure the global stability of the
observation error using a parameter dependent
Lyapunov function.

Now, the situation when ρk �= ρ̂k is considered. In
this case, (4) does no longer hold and turns into :

εk+1 = A(ρ̂k)εk + vk (5)

where it can easily be seen that vk = (A(ρk) −
A(ρ̂k))xk.

In (Millerioux et al., 2004), the observer gains
were computed using a poly-quadratic stability
based approach (Daafouz and Bernussou, 2001)
that is solving the LMIs

[
Pi AT

i GT
i − CT FT

i

GiAi − FiC GT
i + Gi − Pj

]
> 0 (6)

∀(i, j) ∈ {1, . . . , N} × {1, . . . , N} where the posi-
tive definite matrices Pi, the matrices Fi and Gi

are the unknowns and Li = G−1
i Fi. It was shown

that with such an observer the boundedness (in
the sense of the supremum norm) of the resulting
state reconstruction error is guaranteed. Input-
to-State Stability (ISS) concept was used and an
explicit bound in terms of the estimation error
bound ∆ was proposed. We recall here the main
result of (Millerioux et al., 2004).

Definition 1. (Jiang et al., 1999) System (5) is
said to be Input-to-State Stable if there exist
a KL 1 function β : R × R → R and a K
function γ such that, for each input sequence v
fulfilling ‖v‖∞ < ∞ and each ε0 ∈ R

n, the discrete
trajectory associated with the initial condition ε0
and the input v fulfills :

‖εk‖ ≤ β(‖ε0‖, k) + γ(‖v‖∞) ∀k (7)

Theorem 1. (Millerioux et al., 2004) (5) is Input-
to-State Stable, that is there exist a KL function
β : R×R → R and a strictly positive quantity α3

such that

‖εk‖ ≤ β(‖ε0‖, k) + α3‖v‖∞ ∀k (8)

The proposed explicit bound α3, in the steady
state (β(‖ε0‖, k) → 0 as k → ∞), is given by

α3 =

√
c2 + δ−1c2

4

c1
· c2

c3 − δ
(9)

with c1, c2, c3, c4 constant scalars given by

c1 = min
1≤i≤N

λmin(Pi), c2 = max
1≤i≤N

λmax(Pi)

c3 = min
1≤i≤N,1≤j≤N

λmin(Pi − (Âi − LiC)T Pj(Âi − LiC))

c4 = ( max
1≤i≤N

‖Âi − LiC‖) · ( max
1≤i≤N

‖Pi‖)

and
δ ∈]0, c3[

From the bound expression (9), the best result is
obtained by selecting δ in ]0, c3[ which gives the
smallest bound α3. However, selecting the best δ is
constrained by the conservative inequalities used
in the proof of Theorem 1 to provide the bound
(9) and hence will not reduce significantly the gap
between the proposed bound and the actual one.

3. MAIN RESULT

The purpose of this section is to improve the gap
reduction by including the minimization of the
bound α3 in the observer design procedure that
is to select among all possible polytopic observers
(3) the one which minimizes the steady state
bound. The main contribution is stated in the
following Theorem.

Theorem 2. Assume that the following convex
optimization problem

1 A function γ : R → R is a K function if it is continuous,

strictly increasing and γ(0) = 0.
A function β : R×R → R is a KL function if, for each t ≥ 0,
the function β(., t) is a K function, and for each fixed s ≥ 0,
the function β(s, .) is decreasing and β(s, t) → 0 as t → ∞.



Min α
Pi = P ′

i

Gi = G′
i

Fi, α

under
 1 − Pi A′

iGi − C ′F ′
i A′

iGi − C ′F ′
i

GiAi − FiC Pj − 2Gi 0
GiAi − FiC 0 2Gi − α1


 < 0

(10)

has a solution P ∗
i ∈ R

n×n, G∗
i ∈ R

n×n, F ∗
i ∈

R
n×m and α∗, then the error dynamic (5) with

Li = G∗−1
i F ∗

i is Input-to-State Stable, that is

‖εk‖ ≤ β(‖ε0‖, k) + α∗‖v‖∞ ∀k (11)

with β : R × R → R a KL function.

Proof : Assume that the LMIs in (10) are feasi-
ble. Recall that Ãi = Ai − LiC. Multiply these
inequalities on the left by

T =
[
ε′ (Ãiε + v)′ v′]

and on the right by T ′ one gets

ε′(1 − Pi)ε + (Ãiε + v)′Pj(Ãiε + v) − αv′v < 0

which is equivalent by Schur formula to[
ε′(1 − Pi) − αv′v (Ãiε + v)′Pj

Pj(Ãiε + v) Pj

]
< 0

Multiply by ξ̂i and sum, multiply by ξ̂j and sum,
and using Schur formula we obtain

εT
k (ATPk+1A−Pk)εk < −ε′ε + αv′v

with Pk =
∑N

i=1 ξ̂i
kPi which is nothing than

V (εk+1, ξ̂k+1) − V (εk, ξ̂k) < −ε′ε + αv′v (12)

with
V = εT

k Pkεk

Moreover, the feasibility of the LMIs (10) implies
that

Pi > 1 and Pi < 2Gi < α1 and hence α > 1

then

‖εk‖2 ≤ V (εk, ξ̂k) ≤ α‖εk‖2 ∀εk ∈ R
n, ∀ξ̂k ∈ S, ∀k

(13)

Consequently, from (12) and (13), one has :

V (εk+1, ξ̂k+1) ≤ (1 − 1
α

)V (εk, ξ̂k) + α‖vk‖2

(14)
Applying the Gronwall-lemma in the discrete time
case, we obtain :

V (εk, ξ̂k) ≤ (1 − 1
α

)kV (ε0, ξ̂0)+

α

k−1∑
l=0

(1 − 1
α

)k−l−1‖vl‖2

≤ (1 − 1
α

)kV (ε0, ξ̂0) + α2‖v‖2
∞

Finally, by using again (13), taking the square
root, the main inequality is obtained :

‖εk‖ ≤
√

α(1 − 1
α

)k/2‖ε0‖ + α‖v‖∞ (15)

This inequality completes the proof according to
the definition of ISS. Moreover, as α > 1,

√
α(1−

1
α )k/2‖ε0‖ → 0 when k → ∞. �

The convex optimization problem given in the
previous Theorem states that the best quantity α
which explicitly bounds the state reconstruction
error in the steady state is obtained by selecting
among all possible solutions α, Pi, Gi, and Fi for
the LMIs (10) the ones leading to the smallest
value for α.

4. ILLUSTRATIVE EXAMPLE
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Fig. 1. Chaotic behavior

To illustrate the improvement provided by The-
orem 2, we consider the same example as in
(Millerioux et al., 2004). The system is given by

A(ρk) =
[

ρk 1
0.3 0

]
, B =

[
0
0

]
, C =

[
1 0

]
, D = 0

with

ρk(xk) = −1.4x1
k, and xk =

[
x1

k

x2
k

]
This non-linear system has a chaotic behavior
(Figure 1) which implies that the state trajectory
is bounded. The goal is to assess the impact of a
bounded disturbance acting on the signal yk =
Cxk = x1

k and consequently on the parameter
ρk. It is assumed that a uniformly distributed
disturbance wk in the range −0.0025 and 0.0025
acts on the system output. As the parameter ρk is
directly related to the first state component, the
used scheduling parameter ρ̂, given by the noisy
output, in the observer structure is different from



the actual parameter and the difference ‖ρk − ρ̂k‖
is bounded. From a simple numerical study, we
find that ‖xk‖∞ = 1.34 and hence ‖ρk−ρ̂k‖∞ < ∆
with ∆ = 0.007. For this system, a polytopic
description with 2 vertices

A1 =
[
−1.7850 1

0.3 0

]
, A2 =

[
1.7995 1

0.3 0

]

is used and an observer of the form (3) was
designed in (Millerioux et al., 2004). This observer
is characterized by the gain matrices

L1 =
[
−1.7878

0.3

]
, L2 =

[
1.7982

0.3

]
(16)

and leads to a bound α3 = 18.21. The numerical
computation of ‖εk‖ in the steady state (figure 2)
shows that the norm is always less than 0.01 and
so, less than α3‖v‖∞ = 0.16.
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Fig. 2. A: ‖εk‖ with respect to k. B,C: each
component of εk in the steady state.

Notice the large gap between the proposed bound
and the actual observer behavior. As the observer
designed in (Millerioux et al., 2004) is not unique,
one may obtain an observer with a very large gap.
As an example, the observer characterized by the
gain matrices

L1 =
[
−2.9448
0.6000

]
, L2 =

[
2.3759
0.2999

]

satisfies the LMIs (6) with

P1 =
[

0.2773 0.2329
0.2329 0.5597

]
, P2 =

[
0.1836 0.1268
0.1268 1.1971

]
,

G1 =
[

0.3065 0.4854
0.4867 2.2146

]
, G2 =

[
0.2806 0.2338
−0.0079 1.0011

]

and leads to a bound α3 = 5812. The numerical
computation of ‖εk‖ in the steady state (figure 3)
shows that the norm is always less than 0.02 which
is quite far from α3‖v‖∞ = 67.89. Figure 4 shows
the effect of δ, involved in the bound expression
(9), on α3. One can notice that the improvement
provided by an optimization using δ as a degree
of freedom is not sufficient.
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Fig. 3. A: ‖εk‖ with respect to k. B,C: each
component of εk in the steady state.
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Now using Theorem 2, the proposed optimization
problem leads to a solution with

L1 =
[
−1.7850
0.3000

]
, L2 =

[
1.7995
0.3000

]

and a bond α = 2.6180. The numerical com-
putation of ‖εk‖ in the steady state (figure 5)
shows that the norm is always less than 0.01 and
so, less than α‖v‖∞ = 0.0220. The gap between
the proposed bound and the actual behavior has
been significantly improved. Notice that the ob-
server gains are close to the ones obtained ”ran-
domly” in (Millerioux et al., 2004) and recalled in
(16). This illustrates the fact that one may get a
”good” observer using the approach presented in



(Millerioux et al., 2004) but with very conserva-
tive bound. This conservatism is also illustrated
by the computation of the bound expression α3

using the results obtained by the optimization
problem (10), that is α3‖v‖∞ = 0.0808 instead
of α‖v‖∞ = 0.0220 guaranteed by Theorem 2.
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Fig. 5. A: ‖εk‖ with respect to k. B,C: each
component of εk in the steady state.

5. CONCLUSION

In this paper, a convex optimization problem has
been proposed to improve the state reconstruc-
tion bound proposed in (Millerioux et al., 2004)
for LPV systems with uncertain parameters (es-
timated parameters with finite accuracy or noisy
parameters). The result is obtained by including
the bound minimization in the observer design
procedure. When compared to methods based on
H∞ disturbance rejection or peak-to-peak opti-
mization which focus on the worst case distur-
bance effect including during the transient, here
the proposed solution is based on the minimiza-
tion of the reconstruction error bound in the
steady state which is a more realistic. Such a
bound has a practical interest in engineering when
considering for instance the truncation error aris-
ing in digital systems. And yet, assessing the im-
pact of the resulting state reconstruction error,
for fault detection purposes or non destructive
measurement, is of first importance.
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