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Abstract: The excavation of foundations, general earthworks and earth removal tasks 
are activities which involve the machine operator in a series of repetitive operations. 
Automation is likely to provide a number of benefits such as improving efficiency, 
quality and safety. However, a persistent stumbling block for system developers is 
the achievement of fast smooth movement of the excavator arm under automatic 
control. In this regard, the paper develops two very different design methods, a 
model-based, full state feedback approach and a classical frequency domain 
technique based on the Nichols chart. The advantages and limitations of these 
contrasting approaches are identified in terms of both performance and design effort. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 

The civil and construction industries currently deploy 
a large number of manually controlled plants for a 
wide variety of tasks within the construction process, 
using a range of heavy hydraulic machinery 
including cranes, excavators, piling rigs and graders. 
Semi-automatic functions are now starting to be 
adopted as a means of improving efficiency, quality 
and safety, particularly when working in hazardous 
environments. 

However, there are still very few real commercially 
applied examples of site-based intelligent 
construction robots. In this regard, a persistent 
stumbling block for system developers is the 
achievement of adequate smooth movement under 
automatic control. The control problem is generally 
made difficult by a range of factors that include 
highly varying loads, speeds and geometries, 
together with the issue of multiple hydraulic 
cylinders being driven by a single pump.  

Furthermore, the behaviour of hydraulically driven 
manipulators is dominated by the nonlinear, lightly 

damped dynamics of the actuators, in addition to 
external uncertainties such as the soil-tool interaction 
for the case of automated excavators. These 
difficulties are being addressed by researchers using 
a wide range of classical and modern design 
methods: e.g. Chiang and Murrenhoff (1998); Ha et 
al. (2000); Budny et al. (2003); Gu et al. (2004). 

This paper concentrates on a laboratory based 
excavator arm, a 1/5th scale representation of the 
more widely known Lancaster University 
Computerised Intelligent Excavator (LUCIE), which 
is being developed to dig foundation trenches on a 
building site: Bradley and Seward (1998). The 1/5th 
scale excavator arm provides a valuable insight into 
the full sized system and is being used to identify the 
advantages and limitations of the proposed control 
approaches.  The study considers two contrasting 
design methods, a model-based full state feedback 
approach and a classical frequency domain technique 
based on the Nichols chart.  By comparing the 
approaches in a fair unbiased way, it is anticipated 
that an improved understanding of the problems 
associated with this particular plant and of the 
benefits of the two design techniques will emerge. 



     

2. MOTIVATION 

Previous work using LUCIE has demonstrated the 
feasibility of developing a machine that will 
accurately dig a trench of specified dimensions. 
However, control was initially based on the 
ubiquitous Proportional-Integral-Derivative (PID) 
type algorithm, tuned on-line in a rather ad hoc 
manner. As a result, the nonlinear joint dynamics 
would sometimes yield an oscillatory response for 
bucket position. In order to maintain smooth control, 
therefore, previous research has utilised a relatively 
slow control action. 

To make automatic excavation viable it is essential 
that researchers obtain response times that improve 
on those of skilled human operators – without this, 
the economic benefits of automation are limited. For 
this reason, recent research with LUCIE has used 
Proportional-Integral-Plus (PIP) methods, in order to 
improve the joint control and so provide smoother, 
more accurate movement of the excavator arm: Gu 
et al. (2004). Here, Non-Minimal State Space 
(NMSS) models are formulated, so that full state 
variable feedback can be implemented directly from 
the measured input and output signals of the process, 
without resort to the design and implementation of a 
deterministic state reconstructor (observer) or 
stochastic Kalman filter: see Young et al. (1987); 
Taylor et al. (2000).   

Although normally evaluated in the time domain, in 
order to compare with PID design this paper also 
considers the frequency response of the PIP system. 

2.1 PIP Control 

The PIP controller can be interpreted as a logical 
extension of conventional PI/PID controllers, with 
additional dynamic feedback and input compensators 
introduced automatically when the process has 
second order or higher dynamics, or pure time delays 
greater than one sampling interval. However, PIP 
design has numerous advantages: in particular, its 
structure exploits the power of state variable 
feedback methods, where the vagaries of manual 
tuning are replaced by pole assignment or Linear 
Quadratic (LQ) design. Over the last few years, such 
PIP control systems have been successfully 
employed in a wide range of applications, including 
construction: Seward et al. (1997); Gu et al. (2004). 

2.2 Classical/PID Control 

Although modern design methods, such as 
NMSS/PIP, are often said to yield performance or 
robustness benefits, most industrial feedback control 
systems are nonetheless based on classical methods 
such as the Nichols chart. There are perhaps two 
reasons why such frequency domain techniques 
remain popular in industrial practice. In the first 
instance, they provide good designs in the face of 
uncertainty in the plant model. For example, if a 
system has poorly understood resonances at high 
frequency, the design can be compensated to 
alleviate their effects. Secondly, in the absence of a 

formal model of the system, experimental 
information can be used directly for design purposes 
– there is no need for intermediate processing of the 
data to arrive at a system model. In other words, 
measurements of the output amplitude and phase of a 
system exited by a sinusoidal input can be used 
directly to design the control system. Whilst the wide 
availability of powerful computers renders this 
second advantage less important than in the past, the 
design methods remain extremely effective and 
popular. 

3. CONTROL OBJECTIVES 

In order to gain insight into the design problem and 
to compare the true advantages of PIP over a 
properly tuned classical controller, the present paper 
develops and evaluates control systems based on 
both NMSS/PIP and classical methods. For the 
preliminary study reported here, the boom angle of 
the 1/5th scale digger arm is considered. The control 
objective is to achieve the fastest stable response 
between specified angles with ideally no overshoot. 
Furthermore, it is desirable to have integral action to 
ensure steady state tracking even in the event of load 
disturbances. Finally, both controllers are 
implemented with a sampling time of 0.083s, the 
fastest permitted by the existing experimental set-up.  

4. FULL STATE FEEDBACK DESIGN 

In order to develop a linear NMSS/PIP control 
algorithm, a linearised representation of the system is 
required. Here, the small perturbation behaviour is 
usually approximated by a linear transfer function 
model, as follows, 
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where ky  is the angle of the boom joint (degrees) 
and ku  is the applied voltage, expressed as a 
percentage in the range -1000 to +1000. Positive and 
negative inputs open or close the boom joint 
respectively. Here, )( 1−zA  and )( 1−zB  are 
appropriately defined polynomials in the backward 
shift operator ikk

i yyz −
− = . For convenience, any 

pure time delay of 1>δ  samples can be accounted 
for by setting the 1−δ  leading parameters of the 

)( 1−zB  polynomial to zero, i.e.  011 =−δbb � . 

The present research utilises the Simplified Refined 
Instrumental Variable (SRIV) algorithm to estimate 
the model parameters: Young (1985).  However, an 
appropriate model structure first needs to be 
identified, i.e. the most appropriate values for the 
triad [ δ,, mn ]. The two main statistical measures 
employed to help determine these values are the 
coefficient of determination 2

TR , based on the 
response error; and YIC (Young’s Information 
Criterion), which provides a combined measure of 
model fit and parametric efficiency, with large 



     

negative values indicating a model which explains 
the output data well, without over-parameterisation. 

Note that these statistical tools and algorithms have 
been assembled as the CAPTAIN toolbox within the 
Matlab® software environment and can be 
downloaded from: www.es.lancs.ac.uk/cres/captain. 

It is easy to show that the model (1) can be 
represented by the following linear Non-Minimal 
State Space (NMSS) equations, 
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where {F, g, d, h} are given by Young et al. (1987). 
The n+m dimensional non-minimal state vector kx , 
consists of the present and past sampled values of the 
input and output variables, i.e., 
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Here, }{ ,1 kkdkk yyzz −+= −  is the integral-of-error 
between the reference or command input kdy ,  and 
the sampled output ky . Inherent type 1 
servomechanism performance is introduced by 
means of the integral-of-error state kz . If the closed-
loop system is stable, then this ensures that steady-
state tracking of the command level is inherent in the 
basic design. The control law associated with the 
NMSS model (2) takes the usual State Variable 
Feedback (SVF) form, 

 kku xk−=  (4) 

where ][ 11110 Imn Kggfff −= −− ��k  is the 
SVF control gain vector. In more conventional 
block-diagram terms, the SVF controller (4) can be 
implemented as shown in Fig. 1, where it is clear that 
it can be considered as one particular extension of 
the ubiquitous PI controller, where the PI action is, in 
general, enhanced by the higher order forward path 

and feedback compensators )(1 1−zG  and )( 1−zF , 
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Fig. 1  PIP control block diagram. 

However, because it exploits fully the power of SVF 
within the NMSS setting, PIP control is inherently 
much more flexible and sophisticated, allowing for 
well-known SVF strategies such as closed loop pole 
assignment, with decoupling control in the 

multivariable case; or optimisation in terms of a 
Linear-Quadratic (LQ) cost function of the form, 

 { }� +=
∞

=0
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where ][ 111 mnmnnn qqqqqdiag +−++= ��Q  is a 
diagonal state weighting matrix and r is an additional 
scalar weight on the input. The gains are obtained 
recursively from the Algebraic Riccati Equation. 

4.1 Application to the boom angle 

The SRIV algorithm combined with the YIC and 2
TR  

identification criteria discussed above, reveal that a 
first order model with two samples time delay 
provides the best estimated model and most optimum 
fit to the data across a wide range of operating 
conditions, i.e., 
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where ky  is the angle and ku  is the applied voltage 
scaled from -1000 to 1000. Here, it should be pointed 
out that the SRIV algorithm is utilised with 1a  fixed 
a priori at -1, so that only the numerator parameter is 
estimated. This is because the arm always acts like an 
integrator, i.e. there is no movement when the input 
is zero. This assumption is supported by an initial 
modelling study, which usually returns 1a  close to 
unity. Furthermore, 01915.02 =b  yields the best fit 
for the full range of positive and negative applied 
voltages. In other words, the linear model (7) 
represents the ‘average’ behaviour of the nonlinear 
system, and yields the most robust linear PIP control 
performance found to date. 

In this case, the linear NMSS equations are given by 
equation (2) with [ ]Tkkkk zuy 1−=x . Finally, 
trial and error experimentation using step responses 
predicted using the linear model, suggests that setting 

]50013000[diag=Q  and 1.0=r  yields a suitably 
fast control algorithm with no overshoot. 

5. CLASSICAL CONTROL DESIGN 

Numerous tools exist for classical frequency design, 
including Bode plots, Nyquist plots and Nichols 
charts. For the purposes of the present study, the 
Nichols chart is used to design a PI controller. The 
chart allows the designer to represent the open-loop 
gain, phase and frequency data on a single diagram 
(the latter is implicit, as each point on the chart 
corresponds to a single frequency). 

For a deeper explanation of the chart and associated 
design techniques, see e.g. pp. 412-417 Franklin et 
al. (1994) or pp. 505-519 Johnson et al. (2002).  Here 
it is sufficient to say that the key feature of the 
Nichols Chart is that, having plotted the open-loop 
response, it is possible to design closed-loop systems 
that meet phase and gain margin requirements. 



     

Furthermore, the chart gives an indication of the 
closed-loop bandwidth and peak gain (the latter two 
from the contours of constant M or “M-circles”).  

The design approach taken here involves 4 steps: 

1. Collect frequency response date from the open-
loop system across a range that covers the 
frequencies of interest. 

2. Plot the data on a Nichols Chart using 
Matlab/Simulink. 

3. Design appropriate compensation for the system 
to meet the design goals. 

4. Implement and evaluate the control response. 

Each of these steps is covered in more detail below. 

5.1 Frequency Response (steps 1,2) 

Due to hardware limitations the controller must be 
implemented digitally with a maximum sampling 
rate of 0.083s. This places a limit on the maximum 
frequency that can be considered for control design. 
Hence, the frequency range of interest is 0.01Hz up 
to a maximum of 6Hz (where the latter value is the 
approximate Nyquist frequency).  The frequency 
response tests consider the mid-point of the boom 
operating range (25degrees) with the input 
magnitudes selected to ensure that the boom angle 
traversed a large part of its range (at low frequencies) 
and that a measurable output signal was achieved at 
the higher frequencies. 

Due to issues associated with applying a spectrum 
analyser to the rig, the frequency analysis for this  
study was undertaken in Matlab/ Simulink on a 
previously developed non-linear simulation of the 
plant: see Shaban et al. (2004) for details of this 
model. The frequency response data can be seen on 
the Nichols chart in Fig. 2. 

5.2 Design of a PI Compensator (step 3) 

The intent is to design a PI controller taking the 
following continuous-time form, 

 e
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where the angle error is defined by e =(yd – y), while 
Kp is the proportional gain and Ti is the integral time.  
For implementation, equation (8) is converted to a 
discrete-time incremental form, in order to avoid the 
potential problem of integrator wind-up. 

Selection of the proportional gain and integral time 
aims to ensure stability and provide a fast rise time, 
whilst avoiding overshoot. To meet these objectives 
with sufficient robustness, a gain margin (GM) of 
6dB and a minimum phase margin (PM) of 60 
degrees are chosen. Furthermore, to ensure minimal 
overshoot, the compensated frequency response 
should not cross far beyond the 0dB closed-loop gain 
circle. Hence, the design steps are: (i) increase the 
gain until gain or phase margin is compromised or 

the response crosses into the region enclosed by the 
0dB closed-loop gain circle, (ii) add integral action at 
a frequency around 10 times slower than the cross-
over frequency. 
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Fig. 2. Open-loop frequency response for boom 

angle, showing a gain margin of 33dB (at 2Hz) 
and a phase margin of almost 90degrees at 
0.09Hz. 
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Fig. 3. Open-loop frequency response for boom 

angle, showing the compensated response (black) 
alongside the uncompensated system (grey). 

However, it is clear immediately from Fig. 2 that any 
attempt to add integral action will cause crossing of 
the 0dB closed-loop gain circle. Furthermore the 
system already presents type 1 performance. Hence 
only step 1 is followed and the integral gain is set to 
zero (i.e. the integral time is infinite). 

The results are illustrated in Fig. 3, which shows the 
system with a proportional gain of 12.6 and no 
additional integral action.  It can be seen that the GM 
is 11dB and the PM is 66degrees, exceeding the 
specified design criteria by some way. It is also clear 
that the bandwidth of the closed-loop system will be 
about 0.8Hz and that the peak gain (which is related 
to the system overshoot in response to a step input) 
tends to 0dB only at very low frequencies. These 
figures suggest a step response of approximately 
1.25s with no overshoot. 

5.3 Implement and Test (step 4) 

The PI controller was implemented in the following 
discrete-time form with input saturations at +/-1000. 



     

 )( , kkdpk yyKu −=  (9) 

The results are discussed in Section 6 below. 

6.  RESULTS 

The response of the (experimental) excavator arm to 
a step in the command input from an initial angle of 
–3degrees to a final position of 20degrees is 
illustrated in Fig. 4. As would be expected, both 
controllers yield zero error in the steady state (Type-
1 tracking).  The time to reach the set-point for the 
PIP controller is approximately 0.8s compared with 
around 1.2s for the proportional controller.  
However, there is a small overshoot with the PIP 
controller that does not appear in the case of the P 
control. 

This system is known to have significant non-
linearity that would cause steps of different 
amplitude to be transiently different.  Therefore, it is 
also important to compare the two control systems 
over steps of varying magnitude and direction.  
Typical results of such a test can be seen in Fig. 5.   

The figure shows that when responding to steps in 
the positive direction, PIP control is always fastest to 
reach the set-point. By contrast, in the negative 
direction the P control is faster, although in the latter 
case the P control exhibits a small overshoot.   

The PIP design at first responds quickly to a negative 
change in the set point, before subsequently 
overcompensating. The latter problem temporarily 
drives the output away from the set-point by around 
30%. This is presently being investigated by the 
authors: e.g. by adjusting the weighting terms. It is 
also worth noting that the control input signal is 
significantly less active in the case of the P control 
than PIP. 
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Fig. 4  Experiment showing the response of the P and 

the PIP controllers to a step change in set point. 

In an attempt to improve the understanding of the 
two approaches, their respective design domains are 
considered. Figs. 6 and 7 (overleaf) illustrate the 
frequency domain (classical) and theoretical time 
domain (PIP) responses. It is clear that, as would be 
expected given the same design objectives, both 
responses are almost identical.  In particular, the gain 
and phase margin on the Nichols chart (often taken 
as measures of robustness) are approximately the 
same. The rise times are also very similar, with the P 
control predicted to be a fraction faster than the PIP 
to reach steady state. Interestingly, this latter 
observation is reversed in the implementation results 
where PIP tends to be faster. 

Indeed, the reason for the differences between the 
two approaches during the implementation results, 
which are likely to be caused by the different control 
structures utilised, requires further investigation: a 
decision as to which control is “better” for this 
application remains ambiguous. 
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Fig. 5  Experimental results showing the response of the Proportional and the PIP controller to a series of 

varying amplitude changes to the set point.
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Fig. 6 Frequency response comparison of P and PIP 

controllers. 
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Fig. 7. Predicted Step Response (using ideal linear 

model of equation 7) comparison of P and PIP 

7. CONCLUSIONS 

The aim of the research is to provide a balanced 
comparison between the chosen modern and classical 
approaches to control system design, when applied to 
an excavator arm joint. The two control schemes 
considered are: full state feedback Proportional-
Integral-Plus (PIP) control; and P control designed 
using a frequency domain technique based on the 
Nichols chart. Both approaches yield acceptable 
results with little to choose between them.   

In general, it might be expected that PIP with (in this 
case) three gains would have been superior to the P 
control.  This was not found to be the case here. 
Despite the plant’s two sample time delay, it is not 
clear that the higher order PIP approach offers any 
significant improvement over simple P control in this 
case. Note, however, that the results here are limited 
to boom movement in air – digging (and the large 
unmeasured disturbances connected with the 
process) may well alter things.  On completion of 
such experiments, the results will be reported in a 
future publication.  

The excavator arm represents a difficult control 
problem due to both the demanding design 
specifications and the plant non-linearity. It may be 
possible to improve the PIP result with a different 
approach to tuning the weights in (6), whilst 
augmenting the classical design with a derivative (or 
phase advance) action might similarly improve the 
performance.  In addition, a non-linear approach to 
controlling the arm is currently under investigation  
(Shaban et al. 2004). Naturally the successful 

approaches must then be extended to the other joints 
and evaluated for practical digging experiments. 
Finally, it is intended to repeat the classical design 
approach and analysis using a spectrum analyser 
connected directly to the excavator.   
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