
  

 
     

 
 
 
 
 
 
 
 
 
 

A COMPARATIVE STUDY OF SOFT-SENSING METHODS FOR FED-
BATCH FERMENTATION PROCESSES 

 
 

Hongwei Zhang*, Zoubir Zouaoui* and Barry Lennox#

 
 
 

*ASC Technology Computing and Science, North East Wales Institute, UK 
# Control System Centre, The University of Manchester, UK 

 
 
 

 
Abstract: A comparative study of software sensors using Multiway Partial Least 
Squares and Extended Kalman Filters in an application to a fed-batch yeast 
fermentation process is presented. The MPLS theory is introduced firstly and then 
applied to a yeast fed-batch fermentation process to provide soft-sensing facilities. The 
soft-sensing capabilities of the MPLS approach are found to compare favourably with 
the results using EKF. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Industrial fed-batch fermentation systems present a 
very difficult challenge to control engineers. 
Problems associated with the nature of the organisms 
that are being fermented and difficulties related to 
obtaining accurate information regarding the 
progression of the batch make controlling and 
monitoring the process particularly challenging. 
 
The lack of suitable and robust on-line sensors for 
key fermentation variables such as biomass or 
product concentration has been considered as a 
serious obstruction for the implementation of control 
and optimisation of fed-batch fermentation processes 
(Aynsley, et al., 1993; James et al,. 2002). 
Considering biomass concentration alone, there are 
typically two methods available to measure this value 
– direct or indirect methods. To measure the biomass 
directly, several techniques have been applied: 
optical density measurements, capacity 
measurements, high-resolution liquid 
chromatography (HPLC), nuclear magnetic 
resonance (NMR), laser cytometry or biosensors 
(Golobic et al,. 2000). In addition to the high costs 
associated with these measuring devices, their 

reliability can be poor when applied to large-scale 
systems (Montague 1997). It is still the case that 
most industrial fermentation control policies are 
based upon the use of infrequent off-line assay 
information for process operator supervision 
(Dacosta, et al,. 1997). The low sampling frequency 
associated with such measurements and the 
inevitable delays in taking samples and performing 
laboratory tests inevitably compromises the quality 
of control that is possible using such measurements. 
As a result of this an alternative approach, that of 
indirect measurement has attracted a great deal of 
attention over the last 20 years or so. Indirect 
measurements of biomass are mathematical 
algorithms that can produce estimates of unmeasured 
biomass concentration using the continuously 
measured variables such as dissolved oxygen, pH 
and off-gas concentration. The method of estimating 
the quality related variables from measurements of 
secondary variables is referred to as ‘Soft Sensing’ or 
‘Inferential Estimation’. 
 
The famous Kalman filter has become a popular 
approach used for inferential estimation and 
development of software sensors. The Kalman filter 
is the optimal state estimator for a linear system 
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when a model for the system together with the 
knowledge of certain stochastic properties of 
measurement and disturbance noises is available. The 
Extended Kalman Filter (EKF) is an adaptation to the 
nonlinear case of the linear Kalman filter. The EKF 
method optimally tries to estimate the state of the 
system by assuming that: (1) the behaviour of the 
system is described by a non-linear model; and (2) 
the mean and the covariance of the measurement 
errors are known. Many successful applications have 
been reported in the literature, using both simulation 
and experimental investigations (Leigh and Ng, 
1984; Gudi, et al., 1995; Aubrun, et al, 2001).  
 
Multivariate statistical methods based on linear 
projection, such as Principal Components Analysis 
(PCA) and Partial Least Squares (PLS), have also 
attracted considerable interest as a method for 
producing robust empirical models, particularly 
when there are high dimensionality and collinearities 
in the data. PCA and PLS, in particular, and their 
variations, such as neural network partial least 
squares (NNPLS) (Qin and McAvoy, 1992) and 
nonlinear principal components analysis (NLPCA) 
(Dong and McAvoy, 1994, Park and Han, 2000), 
have been applied to many practical regression 
problems to estimate quality related variables in 
chemical engineering processes such as distillation 
columns, combustion processes , the paper and pulp 
making process and polymerisation processes. This 
paper aims to demonstrate Multiway Partial Least 
Squares (MPLS)’s ability to develop software 
sensors for fed-batch fermentation processes in a 
comparative study with EKF. 
 
 

2. STATISTICAL MODELLING AND SOFT-
SENSING USING MULTIWAY PARTIAL LEAST 

SQUARES  
 
 
2.1 Partial Least Squares 
 
PLS is a system identification tool that is capable of 
identifying the relationships between cause (X) and 
effect (Y) variables. The advantage that this 
approach offers over more traditional identification 
techniques, such as ordinary least squares, is that it is 
able to extract robust models even in applications 
involving large numbers of highly correlated and 
noisy process variable measurements.  
 
The approach works by selecting factors of cause 
variables in a sequence that successively maximises 
the explained covariance between the cause and 
effect variables. Given a matrix of cause data, X, and 
effect data, Y, a factor of the cause data, tk, and effect 
data, uk, is evaluated, such that: 
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where E and F are residual matrices, np is the 
number of inner components that are used in the 
model and nx is the number of causal variables. pk 
and qk are referred to as loading vectors. 
 
These equations are referred to as the outer 
relationships. The vectors tk are mutually orthogonal. 
These vectors and uk are selected so as to maximise 
the covariance between each pair, (tk, uk). Linear 
regression is performed between the tk and the uk 
vectors to produce the inner relationship, such that: 
 

k k kb ε= +u t                            (3) 
 
where bk is a regression coefficient, and εk  refers to 
the prediction error. The PLS method provides the 
potential for a regularised model through selecting an 
appropriate number of latent variables, uk in the 
model (np). The number of latent variables is 
typically generated through the use of cross 
validation. 
 
For further details of the PLS algorithm, the reader is 
referred to Geladi and Kowalski (1986). 
 
 
2.2 Multiway Partial Least Squares 
 
PLS is a linear tool, which unfortunately limits its 
effectiveness when applied to non-linear fed-batch 
processes. Two options exist for improving the 
capabilities of PLS when applied to fed-batch 
systems. The first is to develop non-linear 
counterparts to PLS and the second is to transform 
the fed-batch data in such a way as to remove the 
non-linear characteristics (Nomikos and MacGregor, 
1994). Although non-linear PLS techniques exist 
(Qin and McAvoy, 1992), the transformation of 
batch data has proved to be a more effective option 
and has been adopted in this investigation. The most 
common form of data transformation, termed 
multiway PLS (MPLS), was initially proposed by 
Nomikos and MacGregor (1994). Since then other 
researchers have adopted the approach and applied it 
to a variety of processes. For example, Gallagher et 
al. (1996) applied the technique to monitor nuclear 
waste storage vessels and Lennox et al. (2001) and 
Lakshminarayanan et al. (1996) investigated the 
detection of faults in fed-batch fermentation 
processes.  
 
In a fed-batch process, the cause and effect data can 
be thought of as being in two 3-dimensional arrays of 
size nb × nx × mx and nb × ny × my, where nb is the 
number of batches for which data is available, nx and 
ny are the number of cause and effect variables 
respectively and mx and my are the number of 
observations of the cause and effect variables 



  

 
     

respectively that are made during a batch. 
Unfortunately, PLS requires that the cause and effect 
arrays be two-dimensional. To address this problem 
the three-dimensional arrays are recast into two-
dimensional arrays in a process referred to as 
unfolding. The concept of unfolding is illustrated in 
figure 1. The original data arrays are unfolded into a 
cause variable array, X, of size nb × (nx*mx) and an 
effect variable array of size nb × (ny*my). It should 
be noted that the number of observations made of the 
cause variables need not be equal to the number of 
observations made for the effect variables. In fact, it 
is relatively common to have a single effect 
measurement made during a batch. This 
measurement is the final product quality taken at the 
end of the batch. Following the unfolding of the data, 
it is then possible to apply PLS to the data in the 
conventional manner. 
 

 
 
Figure 1 Unfolding 
 
The subsequent use of this model on-line poses the 
problem that it is necessary to know the values of all 
process measurements through to the end of the 
batch, since the unfolded array contains the 
measurements of each of the variables throughout the 
duration of the batch. This means that with the 
exception of the end point of the batch, it is 
necessary to estimate the future values of all the 
measured variables. The prediction of future process 
values is referred to as filling up the array. Of the 
three methods that were suggested by Nomikos and 
MacGregor (1994) for filling up the array, Lennox et 
al. (2001) found that the most appropriate method for 
an industrial fed-batch process was to assume that 
the values of all process measurements remain at 
their current offset from the mean trajectory through 
to the end of the batch. Whilst the most suitable 
filling up method is likely to be process dependent, 
this method was also found to be the most 
appropriate in this work. 
 
The MPLS technique described above and a 
relatively standard EKF will be applied to a fed-
batch yeast fermentation process which is described 
in the next section.  
 

3. A FED-BATCH YEAST FERMENATION 
PROCESS 

 
Baker’s yeast is a very important micro-organism 
that has been used for more than a thousand years by 
human beings. Its importance is illustrated by its use 
in the baking and brewing industries, in single-cell 
protein production, and as a host in genetic 
engineering applications. The yeast used for today’s 
baking, Saccharomyces cerevisiae, does not grow 
during dough raising conditions and therefore it must 
be supplied from external sources. Since 1917, the 
fed-batch fermentation technique has been used to 
produce baker’s yeast. The fed-batch culture is an 
aerobic fermentation process.  
 
The production phase of the yeast production process 
is mathematically simulated for a fed-batch 
fermenter with the addition of substrate. The 
bioreactor was considered completely stirred and 
isothermal with a variable agitation system and an 
aeration system. A mechanistic model has been 
developed which is deterministic and non-structured, 
based on Monod kinetics with coefficients such as 
specific rate of growth, specific rate of substrate 
consumption, and specific rate of oxygen uptake. The 
model contains 5 mass balance equations and 9 
kinetic equations. Initial conditions and all the 
coefficients are obtained from Bich Pham, et al. 
(1998). Based on the mechanistic model, a 
simulation has then been built using Matlab to 
simulate the fed-batch yeast fermentation process. In 
a typical batch, the biomass concentration increases 
from 5g/l to about 60g/l in 15 hours. The substrate 
feed rate follows an exponential curve initially and 
once it has reached a pre-set maximum value of 0.3 
l/h then it is kept constant feed rate to avoid O2 
limiting. During the constant feeding phase, the 
substrate concentration declines and soon falls below 
the critical value. Then the ethanol peak coincides 
with the time when the sugar concentration is equal 
to the critical value. The DOT continues to decrease 
as long as ethanol is present but rapidly increases 
when the ethanol is exhausted and stabilises at a 
concentration corresponding to the feed rate. 
Simulation results of biomass concentration, 
substrate concentration, fermenter volume, ethanol 
concentration, dissolved oxygen tension and 
substrate flow rate for a typical batch are shown in 
Figure 2. 
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Figure 2 Simulation results of the fed-batch yeast 

fermentation 
 
 

4. IMPLEMENTATION OF MPLS AND EKF TO 
YEAST FERMENTATION 

 
 
4.1 Implementation of EKF 
 
Since the theoretical properties of EKF are well-
understood and can be found in estimation and/or 
systems theory textbooks (e.g., Brown and Hwang, 
1992), it will not be introduced here due to limited 
space. A relatively standard EKF algorithm is 
developed and applied to the fed-batch yeast 
fermentation process to estimate the biomass, 
substrate, ethanol and DOT concentrations as well as 
the fermenter volume. 
 
The substrate concentration and the concentration of 
dissolved oxygen are chosen as observed variables. It 
is assumed that these variables are measured with a 
relatively infrequent sampling time at 0.15 h (i.e. 
9min) per sample. In experimental works, these 
measurements are readily available through on-line 
sensors. The concentration of dissolved oxygen can 
be measured by a Dissolved Oxygen (DO) probe 
while a glucose sensor can provide online 
measurement of substrate (glucose) concentration in 
the liquid phase. The substrate feed rate is used as an 
input to the simulation with a sample time of 0.01h. 
In all the simulations, random deviations of white 
noise are assumed to exist in the observed variables. 
 
The measurement noise covariance R can be 
obtained from the measurement data and knowledge 
of the sensor characteristics. The process noise 
covariance Q is usually selected through a trial-and-
error procedure using computer simulations. In this 
work it was shown that, as reported by Oisiovici and 
Cruz (2000), a well-tuned Kalman filter can be 
designed by assuming a diagonal and time-invariant 
process noise matrix. The tuning parameters of the 
EKF are: 
 
P0= diag(1, 0.01, 4, 0.1, 10), 
Q = diag(10,1,100,100,1); 

R = diag(0.01,0.1). 
 
 
4.2 Implementation of MPLS 
 
To develop a MPLS model based on the simulation, 
15 batches of data have been collected. The first 10 
of these batches were used to train the model and the 
remaining 5 were used for validation purposes. When 
generating the data, the initial conditions and the 
culture parameters were selected to be the same as 
those used for EKF. The reason for this is to ensure a 
fair comparison. Pseuco-Random Binary Signal 
(PRBS) sequences were applied to the feed rate in 
order to excite the process so that the data collected 
had sufficient variation to identify accurate process 
models.  
 
A PLS model, containing 2 latent variables, was 
identified from the training batches. In this model the 
following measurements were used as input, or 
cause, variables: substrate feed rate, dissolved 
oxygen concentration and culture volume. Based on 
this model, three software sensors have been 
constructed to estimate the biomass concentration, 
substrate concentration and ethanol concentration.  
 
 

5. COMPARISON OF SOFTWARE SENSORS 
BETWEEN MPLS AND EKF 

 
The accuracy of the estimates provided by MPLS 
software sensors are illustrated in figures 3 to 5 
which compare the actual concentrations with those 
predicted by the MPLS model for a typical batch. For 
comparison purposes, the results on the same process 
using the EKF approach are also displayed. 
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(a) MPLS 
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(b) EKF 
 
Figure 3 Biomass concentration estimations 
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(a) MPLS 
 

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (h)

S
ub

st
ra

te
 C

on
ce

nt
ra

tio
n 

(g
/l)

Estimated values
Actual values

 
 

(b) EKF 
 
Figure 4 Substrate concentration estimations 
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(a) MPLS 
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(b) EKF 
 
Figure 5 Ethanol concentration estimations 
 
From the figures above, although both methods 
provide stable and satisfactory estimations, MPLS 
provide better estimations than EKF’s. This is also 
demonstrated by the mean square errors (MSE) in 
figure 6 below. The MSE is calculated using the 
following equation. 
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tendk
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where x is the actual value, x̂  is the estimated value 
predicted by either MPLS or EKF and is the 
total number of sample point in the batch. 

tendk
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Figure 6 MSE comparison (scaled in percentage) 
 
 

5. CONCLUSIONS 
 
The results show that MPLS models can be 
developed for the on-line prediction of low frequency 
biomass measurements, as well as other variables, 
using direct secondary measurements. The advantage 
of the MPLS technique is that it does not need any 
prior knowledge regarding the process mechanism or 
the kinetic growth rate, which was required for the 
EKF model. The disadvantage is that the accuracy of 
the MPLS model is related to the quality and quantity 
of experimental data that is available from the 
process. In many situations this data might be 
difficult to obtain. In contrast the EKF approach 
depends largely on the accuracy of the process 
model. It requires a large design effort and a priori 
estimates of measurement noise and model 
uncertainty characteristics. The EKF can also suffer 
from numerical problems and convergence 
difficulties due to approximations associated with 
model linearisation. However, it is a generic and 
elegant approach to cope with the problem of 
recursive estimation.  
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