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INTRODUCTION

Let a system behavior be given. This system
is called stabilizable if a controller, defined on
the whole set of system variables, can be found
such that the intersection of the system behavior
and the controller behavior is stable and the
interconnection is regular, see Willems (1997). A
stabilizable system is characterized by the fact
that it can be described by a kernel representation
associated to a polynomial matrix, having full
row rank in the right half plane. Stabilization by
regular full interconnection is equivalent to adding
rows to this polynomial in such a way that the
resulting square matrix is Hurwitz, i.e. has full
rank in the right half of the complex plane.

So the problem we solve here is embedding a
non square polynomial matrix of full row rank
in the right half plane into a square polynomial
matrix with the same property. The method we
use is closely related to the algorithm described
by Beelen and Van Dooren (1988) to embed a
polynomial matrix having full row rank in the
whole plane into a unimodular one. For the uni-
modular embedding problem the algorithm leads
to serious numerical problems, while in our prob-

lem the prospects are much better. We will come
back to this issue in section 8.

A related problem is stabilization by partial in-
terconnection, where the controller behavior is
only defined on a subset of the system variables.
This occurs for instance when only a part of
the variables can be influenced by the controller.
In the solution of the stabilization problem with
regular partial interconnection the solution to the
problem we treat here is an essential ingredient.
We will report on that elsewhere.

1. PRELIMINARIES

Let us start with an easy example:

Example. Let P (ξ) = (ξ2−1 ξ+1). This matrix
has clearly rank one for any λ ∈ C+, the closed
right half plane, that we substitute for ξ. We try
to construct a constant vector Q such that the
matrix W (ξ) resulting from stacking P (ξ) and Q
is stable. Let Q = (a b), then

det(W (ξ)) = (ξ + 1)(bξ − (b + a)).

Choosing a/b < −1 yields a stable W .
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This example shows that the solution is not
unique, which is not really surprising, but it also
shows that the set of solutions is big, contrary
to the unimodular embedding problem, where the
solution set generally is small.

Clearly we will need to stack matrices frequently.
To save space we will denote that by a semicolon:

(P ;Q) :=

(
P
Q

)
.

For notational convenience we denote the class of
non constant polynomial matrices P (ξ) that have
full row rank for all λ in the closed right half plane
by M. A Hurwitz matrix is a square matrix in M.

In this paper a special role is played by polynomial
matrices of degree one. With a slight abuse of
terminology we call this a (matrix) pencil, and
we will denote it by A + ξE.

2. MATHEMATICAL PROBLEM
FORMULATION

Let P (ξ) be an m × n (with n > m) polynomial
matrix of degree d:

P (ξ) = P0 + P1ξ + P2ξ
2 + ... + Pdξ

d (1)

where each Pi is a real m × n matrix.

The objective is to construct another polynomial
matrix

Q(ξ) = Q0 + Q1ξ + Q2ξ
2 + ... + Qdξ

dq , (2)

of size (n − m) × n such that the matrix W (ξ) =
(P (ξ);Q(ξ)) ∈ M. If such a Q(ξ) exists we say
that P (ξ) is embedded into the Hurwitz matrix
W (ξ). Since a Hurwitz matrix is invertible for all
λ in C+, the embedding problem can only have a
solution if P (λ) has full row rank m for all λ in
C+, so if P is in M.

To construct a Q we follow the idea from Bee-
len and Van Dooren (1988) for the unimodular
embedding problem. This means linearizing the
problem, but instead of bringing the resulting
matrix pencil in full generalized Schur form as
they do, we restrict ourselves to the specific needs
for this problem.

3. THE STATE SPACE REPRESENTATION

Any behavior, defined by a kernel representation,
we can also represent by an observable state
space representation (?Rapisarda and Willems
(1997)). Let the behavior be given by B = {w ∈

L1
loc(R, Rn|P ( d

dt
)w = 0} (we consider solutions to

the differential equations in distributional sense
in the space of locally integrable functions). Let
the truncation of P, T (P ) be defined by T (P ) =
(−Pdξ;−Pdξ

2 −Pd−1ξ; . . . ;−Pdξ
d−1 − . . .−P2ξ).

Let Bs = {(x,w) |(E d
dt

+ A)x = 0, w = Cx}
where the dm × (d − 1)m + n matrices A and E
are defined by

A =




I
. . .

I
P0


 ,

E =




0 Pd

−I
. . . Pd−1

. . .
. . .

...
−I P1




,

and C = (0 0 . . . 0 I). Bs is an observable state
space representation for B, in fact (x,w) ∈ Bs if
and only if x = (T (P )( d

dt
)w;w) and P ( d

dt
)w = 0,

as can be seen by premultiplying A+ ξE with the
unimodular matrix

U(ξ) =




I 0 . . . 0
ξI I . . . ; 0
...

. . .

ξd−1I . . . I


 :

(x,w) ∈ Bs if and only if




I −T (P )(
d

dt
)

0 P (
d

dt
)


x = 0

and w = Cx, so if and only if x = (T (P )w;w),
with w ∈ B. So Bs is a latent variable representa-
tion of B, and since the equations (in the original
formulation) are of degree one in x and of degree
zero in w, it is a state space representation.

This also shows that B is stabilizable if and only if
Bs is, or stated differently that the rank of A+λE
equals the rank of P (λ)+(d−1)m, so in particular
we have

Corollary. P (ξ) ∈ M if and only if A+ξE ∈ M.

Suppose we find a K(ξ) such that (A + ξE;K(ξ))
is Hurwitz. Premultiplying with diag(U, I), we
see that this amounts to adding an equation
K( d

dt
)x = 0 to the state space representation.

By plugging in x = (T (P )( d
dt

)w;w), this means

adding Q( d
dt

)w := (K1T (P )+K2)(
d
dt

)w = 0 to the
equations. Since the augmented pencil is Hurwitz,
so is (P ;Q).



4. STABLE EMBEDDING FOR A PENCIL

If the pencil A+ξE has a special form: upper block
diagonal with full row rank constant or Hurwitz
matrices on the diagonal, then finding K is easy.

Lemma 1. Let the pencil Â + ξÊ be defined by




A11 A12 + ξE12 . . . A1`+1 + ξE1`+1

0 A22 . . . A2`+1 + ξE2`+1

...
...

. . .
...

...
0 0 . . . A`` A``+1 + ξE``+1

0 0 . . . 0 A`+1`+1 + ξE`+1`+1




(3)

such that each Ai,i has full row rank for i = 1 . . . `

and A`+1`+1 + ξE`+1`+1 is Hurwitz. Let K̂ =
(diag(K1,1(ξ), . . . ,K`,`(ξ), 0), be such that each

block (Ai,i;Ki,i(ξ)) is Hurwitz. Then (Â+ ξÊ; K̂)
is Hurwitz.

Proof. It is straightforward. Using row permu-
tations we bring the resulting pencil in an upper
block triangular form with the blocks (Aii;Kii(ξ))
and A`+1`+1 + ξE`+1`+1 on the diagonal, proving
that the determinant of the pencil has its roots in
the left half plane.

The idea of the construction is to find orthogonal
constant matrices M and N such that M(A +
ξE)N has the structure displayed in equation (3).
Then K̂(ξ)NT is the polynomial matrix that we
are looking for:

Lemma 2. Let A + ξE be an arbitrary matrix
pencil in M, and let M,N be orthogonal, con-
stant matrices such that M(A + ξE)N has the
structure (3) of lemma 1. Then, there exists a
polynomial matrix K(ξ) such that (A+ξE;K(ξ))
is Hurwitz.

Proof. Choose K̂(ξ) such that the embedding
(M(A + ξE)N ; K̂) is Hurwitz. Since
(

A + ξE

K̂(ξ)NT

)
=

(
MT 0
0 I

)(
M(A + ξE)N

K̂(ξ))NT

)

it is also Hurwitz. So we can take K(ξ) =
K̂(ξ)NT .

So the remaining task is to find for an arbitrary
pencil in M the matrices M and N .

5. TRANSFORMING THE PENCIL

The next theorem proves that we can find M and
N .

Theorem 1. Let A + ξE be a pencil in M. Then
there exist orthogonal matrices M and N such
that M(A + ξE)N =



A11 A12 + ξE12 . . . A1`+1 + ξE1`+1

0 A22 . . . A2`+1 + ξE2`+1

...
. . .

. . .
...

...
0 . . . 0 A`` A``+1 + ξE``+1

0 . . . 0 A`+1`+1 + ξE`+1`+1




where Aii has full row rank for i = 1 . . . `, and
the pencil A`+1`+1 + ξE`+1`+1 is either Hurwitz
or missing.

Remark. By missing we mean that it has size
0 × 0, so then the whole last block column is
missing.

Proof. The theorem is proved by induction on
the size s of the pencil, the sum of the number of
rows and columns.

For s = 2 the pencil is scalar, and being in M it
has to be a nonzero constant, so ` = 1, and the
lower right pencil is missing (or ` = 0, and the
lower right pencil is constant).

Now suppose that s > 2. Let the pencil have m
rows and n columns (because it is in M we have
that m ≤ n). If m = n then the pencil is Hurwitz
and it is the desired form already with ` = 0, so
assume that m > n.

Let N1 be an orthogonal matrix such that EN1 =
(0 E2), where E2 has full column rank. Decompose
AN1 in the same way: AN1 = (A1 A2).

If A1 = 0, then A2 + ξE2 has to be Hurwitz, so
we are finished with N1 = N,M = I, and ` = 0.

If A1 6= 0, then let M1 be an orthogonal ma-
trix such that M1A1 = (A11; 0), with A11 hav-
ing full row rank. Decompose the products of
M1 with the other blocks likewise: M1A2 =:
(A12; A22), M1E2 =: (E12; E22).

The lower right pencil A22 + ξE22 is in M and
has size smaller than s, so by induction there
exist M2, N2 such that M2(A22 +ξE22)N2 has the
desired structure.

Let M = (diag(I,M2))M1, N = N1(diag(I,N2)),
then

M(A + ξE)N

=

(
I 0
0 M2

)(
A11 A12 + ξE12

0 A22 + ξE22

)(
I 0
0 N2

)

=

(
A11 A12 + ξE12N2

0 M2(A22 + ξE22)N2

)

which proves the theorem.



6. IMPLEMENTATION

Summing up: Starting with a polynomial matrix
P (ξ) ∈ M we construct the associated pencil
A+ξE ∈ M. We find M and N such that M(A+
ξE)N has the structure of equation (3), and
construct a K̂(ξ) which embeds this structured
pencil into a Hurwitz pencil. K = K̂NT then
embeds the original A + ξE. Decomposing K =
(K1 K2), then yields Q(ξ) as K1(ξ)T (P )(ξ) +
K2(ξ).

Note that the associated pencil and T (P ) are
defined directly in terms of the original matrix P ,
so the only elements that we really calculate are
the matrices Ki(ξ). Starting from the associated
pencil this is accomplished by QR decompositions
alone.

7. EXAMPLE

Let us consider the following polynomial matrix
P (ξ):

P (ξ) =

(
11ξ + 1 9.5ξ + 2 3ξ + 3

1.4ξ + 2.5 3ξ + 1.7 2.7ξ + 7.6

)

Running the algorithm, we get the following (non-
reduced) pencil:

A+ξE = ξ

(
−11.0 −9.5 −3.0
−1.4 −3.0 −2.7

)
−

(
1.0 2.0 3.0
2.5 1.7 7.6

)

The matrices Â and Ê, respectively are

Â =

(
4.1370 −5.9817 −4.6801

0 −1.6853 −1.8058

)

Ê =

(
0 2.5787 5.8323
0 0 14.0654

)

For the matrix K̂F we take

K̂F = [0 0 − 1]

In consequence, KF = K̂F QT is

KF = [−0.7549 − 0.6310 − 0.1787]

Since d = 1, in this case Q(ξ) = KF . Then we
see that the embedings for the non reduced pencil
A + ξE and its corresponding staircase form Â +
ξÊ, are, respectively

(
A + ξE

KF

)
=




−11.ξ − 1. −9.500ξ − 2. −3.ξ − 3.
−1.400ξ − 2.500 −3.ξ − 1.700 −2.700ξ − 7.600

−0.7549 −0.6310 −0.1787




with determinant −.8854·10−15ξ2−.4066·10−15ξ−
6.972 ≈ −6.972.
and

(
Â + ξÊ

K̂F

)
=




−4.137 2.579ξ + 5.982 5.832ξ + 4.680
0 1.685 14.07ξ + 1.806
0 0 −1




with determinant 6.971.

The program finishes showing

W (ξ) =

(
P (ξ)
Q(ξ)

)
=




11.ξ + 1. 9.500ξ + 2. 3.ξ + 3.
1.400ξ + 2.500 3.ξ + 1.700 2.700ξ + 7.600

−.7549 −.6310 −.1787




with det(W (ξ)) = −.8854 · 10−15ξ2 − .4066 ·
10−15ξ − 6.972 ≈ −6.972.

8. NUMERICAL CONSIDERATIONS

In the preceding section we gave an example in
which the final matrix W is Hurwitz, with two
poles with a real part of approximately −4/9
and a modulus of magnitude 107. These poles
stem from rounding errors: The reduced pencil is
embedded in a unimodular matrix (because the
starting matrix P was not only stabilizable, but
in fact controllable), but after transformation the
non reduced pencil is embedded in a Hurwitz one,
although in theory we have only applied constant
orthogonal transformations. If we run higher order
examples more problems occur, and the resulting
matrix W is often not even Hurwitz.

Although we do not exactly understand the rela-
tion we have noticed that there is a relation with
geometry of the space of pencils. This geometry
has been described by Elmroth (1995). From a
global point of view we can say that generically
every wide polynomial matrix will be controllable,
while we are trying to construct an embedding in
a unimodular matrix, a highly non generic form.
So the existence of numerical difficulties is to be
expected. In the case of degree higher than one,
the problem is even trickier: in the calculation of
the generalized Schur form we only employ or-
thogonal matrices, which leave the singular values
of E and A unchanged (in theory). But note that
that A = diag(I, P0) has many singular values
equal to one, which makes the pencil A + ξE
highly non generic. After calculation of K̂ the



calculation of K is supposedly done by the inverse
transformations. If we would carry out the actual
inverse transformation not only on K̂ but also on
Â + ξÊ we are probably not exactly back in our
original pencil A + ξE. So the calculated Q is not
the Q that we need.

The proposed algorithm by Beelen and Van
Dooren for the unimodular embedding problem
calculates a Q of lower degree than P . Allowing
the degree of Q to be higher gives more freedom in
the construction ((Aii;Ki) has to be unimodular
instead of invertible). For the unimodular embed-
ding problem this does not give a lot of freedom.

For the stable embedding problem the situation
looks more promising. Not only is the set of stable
matrices an open subset of all square polynomial
matrices of the same degree, but also the increased
freedom in choosing K̂ is bigger. At this moment
we have not worked out this in full detail, but we
will address both the underlying structure causing
the difficulties and the proposed improvements of
the algorithm in more detail in the near future.

9. MORE EXAMPLES

In table 9 we show the result of twelve examples
of polynomial matrices with the corresponding
pencils. The last two examples correspond to real
physical systems, a cement kiln, ExK and and
an electric motor, ExM . Note: The sizes of the
matrices below are indicated as (m,n),etc. σ1(A)
denotes the number of singular values of A equal
to 1. We see that only in case of degree 1 we end
up with W that is Hurwitz.

d = 1 P A + ξE σ1(A) W (ξ)

ExT (3, 6) (3, 6) 3 ok

Ex0 (2, 3) (2, 3) 0 ok

Ex1 (5, 14) (5, 14) 0 ok

Ex2 (7, 9) (7, 9) 0 not ok

d = 2

Ex1 (5, 24) (10, 29) 6 not ok

Ex2 (4, 6) (8, 10) 4 not ok

d = 3

Ex1 (3, 4) (9, 10) 6 not ok

Ex2 (3, 5) (9, 11) 6 not ok

Ex3 (4, 6) (12, 14) 8 not ok

d = 4

Ex1 (4, 5) (16, 17) 12 not ok

d = 6

ExK (3, 5) (18, 20) 15 not ok

d = 7

ExM (2, 5) (14, 17) 12 not ok

Table 1. 12 examples

The first column includes the set of examples for
different degrees d. Next to it, we give the sizes
of the corresponding polynomial matrices P (ξ)
under study as well as the size of their associated
pencils in the third column (notice the way the
size increases). Columns 4 contains the number
of singular values of that equal 1, and the last
column indicates whether the final W is Hurwitz
or not. Note that only in a few examples the
algorithm finds a Hurwitz matrix.

10. THE PSEUDOSPECTRUM OF A PENCIL

A pseudospectrum (or ε pseudospectrum Higham
and Tisseur (2002), Wright and Trefethen (2002))
for a rectangular matrix is a generalization of
the spectrum for square matrices. There also ex-
ists a generalization for non-square matrix pen-
cils Boutry et al. (2004), Wright and Trefethen
(2002)).

Λε(E,A) = {λ ∈ C : ||(λE − A)|| ≤ ε}

Linked to the latter definition is the following
one (Boutry et al. (2004)) which is often used to
construct the pseudospectra of square matrices:

f(λ) = σmin(λE − A)

f(λ) was calculated for the twelve examples given
above and the results obtained can be summarized
as follows. Notice that σmin(λE − A) ≤ σmin(A).
Since A + ξE has full row rank for all λ ∈ C we
can see that f(λ) is strictly positive. Two graphs
are displayed in figures 1 and 2.

Although the set of curves look very different at
first sight, there is a pattern. For d = 1 the family
of curves f(λ) is - basically - up concave and it is
floating above a critical plane , f(λ) = 1.

For d = 2, the curves are shifted down and two
downward spikes appear (they are the local min-
ima). Moreover, there appears a local maximum in
f(λ) = 1 The up concavity is still present but both
local minima have crossed the forbidden region,
the plane f(λ) = 1. If we increase the value of d,
this pattern becomes stronger, the local minima
go down to almost zero, and the local maximum
peak, starts to go up (with respect to lambdas
of high magnitude, although f(λ) = 1 is fixed
for all the curves) , until the roles of maximum
- minimum are inverted. Then, σmin(A) becomes
the global maximum of the the curves (for d = 7).
If we are to embed P (ξ) stably by Q(ξ) then the
resultant determinant, det(W (ξ)) will have many
eigenvalues in the left hand side of the complex
plane but also some on the right side of a big
magnitude.
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Fig. 1. Projected pseudospectrum of an 8 x 10
pencil.
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Fig. 2. Projected pseudospectrum of an 14 x 17
pencil.

11. COMMENTS

Unimodular and stable embeddings are quite
meaningful in polynomial systems and control
theory. Nevertheless, although such embeddings
were found to be theoretically applicable, we
found out that this is true but up to some extend.
We realize that some other theoretic considera-
tions had (and still have) to be taken into account,
not only to complete the theory that already ex-
ist, but also to prevent the arising of numerical
problems at the moment of actual implementation
(lack of accuracy, ill conditioning and even ill
posing). We shall report on it in the future.
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