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Abstract. The paper addresses problems of analysis and control of spatial behavior

of uncertain dynamical systems associated with properties of invariance and attractivity

of smooth geometric objects (goal sets). The use of geometric control theory and in-

equalities of passivity allows one to reduce the problems to input-to-state stability with

respect to part of the variables, construct Lyapunov-like storage functions and propose

simplified local solutions. On this basis, design procedures, static and dynamic con-

trol laws ensuring the desired properties of spatial dynamics are proposed. Copyright
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I. INTRODUCTION

The required performance of a dynamical system is of-
ten associated with achieving a desired mode of spatial
motion x(t) ∈ Rn prescribed by equations of curves,
surfaces or other nontrivial geometric objects (goal
sets) Z∗ of the state space Rn given as

ϕ(x) = 0. (1)

The relevant problems of spatial motion control (see
Fradkov et al., 1999; Korolev et al.,2000; Miroshnik,
2002a) consist in finding a control that provides in-
variance and attractivity of Z∗. They are directly re-
lated to disturbance attenuation, qualitative and op-
timal control, output stabilization, coordination and
curve/surface-following (Isidori, 1995; Elkin, 1998;
Fradkov et al.,1999, etc.). On the other hand, the
problems are closely connected with partial stability,
or stability with respect to function ξ = ϕ(x) (Vorot-
nikov, 1998 and 2004; Fradkov et al.,1999; Miroshnik,
2002b and 2004).

Usually, the know solutions (Isidori, 1995; Vorotnikov,
1998; Fradkov et al., 1999), providing attractivity of
submanifolds and partial stabilization of the system,
are not robust, and even small variation of the models
can induce a considerable change of the system’s be-
haviour. Moreover, even in ”good” cases there are a
variety of internal disturbing factors such as functional
and parametric uncertainties caused by absence of an

exact description and slow variation of the models of
the plant and the geometric object, as well as exter-
nal disturbances and signal uncertainties. All of them
can prevent a desired performance of the system that
causes the necessity of studying the robust properties
of the spatial motion control systems and finding con-
structive conditions, under which attractivity of the
relevant sets and partial stability of uncertain systems
are achieved.

The main purpose of this paper 1 is to represent an ap-
proach to the analysis of attractivity properties of mul-
tidimensional sets of smooth uncertain dynamical sys-
tems and methodologies of the design of control laws
which provide an ”approximate” partial stability, or
more exactly, their (partial) input-to-state stabilization
(ISS). The use of known techniques of geometric the-
ory, allows one to reduce the problems under consider-
ation to stability with respect to part of the variables,
construct Lyapunov and storage functions and propose
simplified local solutions. The results to be discussed
are based on the general principles of input-to-state
stability (Sontag et al., 1995; Khalil, 1996) and in-
equalities of passivity (Fradkov et al.,1999; Polushin et
al., 2000), which (for bounded disturbances) leads to
standard conditions of robustness (so called asymptotic
gain). By using quadratic storage functions, estimates
of the disturbed processes, as well as static and dy-
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namic control laws, providing the required robust and
ISS properties, are obtained.

2. ATTRACTIVITY AND PARTIAL STABILITY

In the beginning, we analyze the behaviour of the
smooth autonomous nonlinear system

ẋ = fc(x), (2)

where fc is the smooth vector field supposed to be com-
plete in an open set X ⊂ Rn, with respect to a con-
nected geometric object (1), or ν-dimensional smooth
hypersurface Z∗ = {x ∈ X : ϕ(x) = 0}. Here a
smooth vector function ϕ = {ϕi} (i = 1, 2, . . . , n − ν,
ν < n), is supposed to satisfy the local regularity con-
dition, and therefore the set Z∗ is an embedded sub-
manifold of X (Isidori, 1995; Fradkov et al., 1999).
For the sake of simplicity, we also suppose that Z∗ is
one-sheeted and define the vector of local coordinates
z = {zi} ∈ Z ⊂ Rν as

z = ψ(x), (3)

where ψ is a smooth mapping from Z∗ to the open
simply connected set Z. In order to analyze the mo-
tion in the vicinity of Z∗, we define a neighborhood
of Z∗ as an open simply connected set E(Z∗) = {x ∈
X : ψ(x) ∈ Z} ⊃ Z∗, and introduce the vector of
external dynamics (of deviations) ξ ∈ Ξ ⊂ Rn−ν as

ξ = ϕ(x). (4)

The invariant set Z∗ is called an attracting submani-
fold of the system (2) when

lim
t→∞

dist(x(t, x0),Z∗) = 0 (5)

uniformly with respect to x0 ∈ E(Z∗).
The system (2),(4) at the partial equilibrium point ξ =
0 is called partially (uniformly) asymptotically stable
when

lim
t→∞

ξ(t, x0) = 0 (6)

uniformly with respect to x0 ∈ E(Z∗).
Find the Jacobian matrix of the mapping (3),(4)

J(x) = Φ(x)
Ψ(x) = ∂ϕ/∂x

∂ψ/∂x
and the metric matrix

Q(x) = (J(x)JT (x))−1. The invariant submanifold Z∗
of a partially stable system is an attracting set under
the following condition of metric regularity (Fradkov
et al., 1999; Miroshnik, 2004).

Assumption 1. For all x ∈ E(Z∗), it holds that

q2
1I ≤ Q(x) ≤ q2

2I, q2 ≥ q1 > 0.

In order to obtain simplified conditions of attractivity
of the submanifold Z∗ and to analyze partial stability
of the system (2), (4), we transform the system and
reduce the problem to that of stability with respect to

part of the variables (Miroshnik, 2001 and 2002a). By
using the regular coordinate change (3)-(4) (diffeomor-
phism) with the smooth inverse x = r(z, ξ), we obtain
the task-oriented model

ξ̇ = fξ(ξ, z), (7)
ż = fz(ξ, z), (8)

where fξ = (Φ f) ◦ r(ξ, z), fz = (Ψ f) ◦ r(ξ, z), and
fξ (0, z) = 0. Perform an expansion of fξ and rewrite
(7) in the form

ξ̇ = Ac(z)ξ + o(ξ, z), (9)

where Ac = (∂fξ/∂ξ)|ξ=0, assuming that o(ξ, z)/|ξ| →
0 as ξ → 0 uniformly in z ∈ Z. Now the transformed
system is represented by the linear-like nonstationary
part (9) which parameters are generated by the non-
linear model (8).

Suppose that for all z ∈ Z the matrix Ac(z) is bounded
and define a function λ(z) such that

λ(z) > max
i

Re λi {Ac(z)}. (10)

Then we can choose a Lyapunov-like function

V (x) = ξT P (z)ξ, (11)

where the matrix P = PT is found as a solution of
Lyapunov-like equation

Ac(z)T P (z) + P (z)Ac(z) = −εI + 2λ(z)P (z), (12)

ε > 0. Consider the matrix Ṗ (z) and write

Ṗ = Π(z) + O(ξ, z) (13)

where Π(z) = {(∂Pi/∂z)fz0(z)}, supposing that
O(ξ, z) → 0 as ξ → 0 uniformly in z ∈ Z.

By using Lyapunov Lemma, one can prove the follow-
ing result (see Miroshnik, 2001 and 2002b).

Lemma 1. Suppose that, for all z ∈ Z, the function
λ(z) obeys inequality (10), then there exist numbers
π2 ≥ π1 > 0 such that

π2
1I ≤ P (z) ≤ π2

2I. (14)

If, additionally, there exists λ0 > 0 obeying, for all all
z ∈ Z, the inequality

Π(z) + 2(λ(z) + λ0)P (z) ≤ 0, (15)

than there exists a number λ̂0 ∈ (0, λ0) such that

V̇ (x) + 2 λ̂0V (x) ≤ 0. (16)

Inequality (16) leads to

˙|ξ|P + λ̂0|ξ|P ≤ 0 (17)



and therefore

|ξ(t)|P ≤ e− λ̂0t |ξ0|P . (18)

In the view of Assumption 1, we can formulate the
following result (see Miroshnik, 2001 and 2002b).

Theorem 1. Suppose that Assumption 1 holds and
in the neighborhood E(Z∗) the system (2) is complete
and satisfies the conditions of Lemma 1. Then the
system (2), (4) at the point ξ = 0 is asymptotically
stable with respect to ξ, and the set Z∗ is an attractor
of the system (2).

3. PARTIAL PASSIVITY AND ROBUSTNESS

Consider the disturbed system

ẋ = fc(x) + ∆(x, t), (19)

where ∆ is an n-dimensional vector of disturbances
supposed to be continues (in x and time) and, at least
locally (in time), bounded in some domain E(Z∗). We
restrict the consideration to a case when, in the vicin-
ity of Z∗, the functions ψ, ϕ and ∆ satisfies the fol-
lowing.

Assumption 2. There exists a smooth vector field
gξ(x) ∈ Rn such that, for all x ∈ E(Z∗), it holds that

∂ϕ

∂x
∆(x, t) ∈ span{∂ϕ

∂x
gξ(x)}, ∂ψ

∂x
∆ = 0.

Under the assumption the task-oriented model takes
the form

ξ̇ = fξ(ξ, z) + gξ(ξ, z)w1, (20)

and (8), where gξ = (Φ g) ◦ r(z, ξ), w1 = w1(x, t) is a
scalar disturbance.

Let the point ξ = 0 be a partial equilibrium of system
(19) when ∆ = 0, and, at this point, the latter be
partially (uniformly) asymptotically stable. Behavior
of the disturbed system in the vicinity of the subman-
ifold Z∗ is connected with the following property of
input-to-state stability.

The system (19), (4) is called partially input-to-state
stable (partially ISS) when for all continues w1(x, t) ∈
Lp it holds that |ξ(t| ∈ Lp, p ∈ [1,∞].

In the case under consideration, the definition implies,
in particular, that |ξ(t)| is square integrable (and tends
to zero as t → ∞) when w1(x, t) is square integrable,
and if w1(x, t) is globally bounded, so is |ξ(t)|. The
latter corresponds to the following notion.

The system (19), (4) is called partially robust when for
all (globally) bounded disturbances w1(x, t) ∈ L∞ it
holds that

lim
t→∞

ξ(t, x0) ≤ γ(‖w1‖∞), (21)

where γ isK function (nonlinear asymptotic gain), uni-
formly with respect to x0 ∈ E(Z∗).

Introduce expansions of fξ and gξ and write:

fξ = Acξ + o1(ξ, z), gξ = b(z) + B(z)ξ + o2(ξ, z),

where Ac = (∂fξ/∂ξ)|ξ=0, B = (∂gξ/∂ξ)|ξ=0,
b(z) = gξ(0, z), and o1(ξ, z)/|ξ| → 0, o2(ξ, z)/|ξ| → 0
as ξ → 0 uniformly in z ∈ Z. The transformed system
is represented by the linear-like nonstationary part

ξ̇ = Ac(z)ξ +
(
b(z) + B(z)ξ

)
w1 +

+
(
o1(ξ, z) + o2(ξ, z)w1

)
, (22)

parameters of which are generated by the nonlinear
model (8).

In order to investigate the partial ISS property of the
system, we choose a quadratic storage function V (x)
of the form (11)-(12) and introduce the virtual output

v = qT (z)ξ, (23)

where qT (z) is a row matrix defined as

qT (z) = bT (z)P (z). (24)

Suppose that for z ∈ Z the matrix A(z) is bounded
and there exists a function λ(z) obeying inequality
(10). Then, by using Lyapunov Lemma, one can prove
the following result.

Lemma 2. Suppose that the function λ(z) obeys in-
equality (10), then there exist numbers π2 ≥ π1 > 0
such that inequality (14) holds.

If, additionally, for all w1(x, t) and z ∈ Z, there exists
λ0 > 0 obeying the inequality

Π(z) + (BT (z)P (z) + P (z)B(z))w1 +
+ (λ(z) + λ0)P (z) ≤ 0, (25)

then there exists numbers λ̂0 ∈ (0, λ0), such that

V̇ (x) + 2λ̂0V (x) ≤ 2vw1. (26)

Inequality (26) leads to

˙|ξ|P + λ̂0|ξ|P ≤ |b(z)|P |w1|. (27)

Suppose that for all z ∈ Z the matrix b(z) = g(0, z)
is bounded, and |b(z)|P ≤ β, where β > 0 . Then
inequality (27) yields the estimate

|ξ(t)|P ≤ e− λ̂0t |ξ0|P + βw(t), (28)

where w =
∫ t

0
e− λ̂0(t−τ)|w1(τ)|dτ. The latter leads

to the following conclusion.

Theorem 2. Suppose that Assumption 1–2 hold and,
in the neighborhood E(Z∗), the system (19) is com-
plete and satisfies the conditions of Lemma 2. Then
the system (19), (4) is partially input-to-state stable
and, for the globally bounded disturbances w1, is par-
tially robust.



Note that for the case considered the asymptotic gain
in relation (21) is linear and found as

γ =
β

λ̂0

‖w1‖∞.

4. STABILIZATION AND STATIC ROBUST
CONTROL

First, consider the smooth undisturbed system

ẋ = f(x) + g(x)u, (29)

where u ∈ R1 is the input (control), f and g are the
smooth vector fields defined in X . The general prob-
lems of control is stated as follows.

Control problem 1. Find a control law which provides
partial stabilization of the system (29) with respect
to the equilibrium point ξ = 0 and attractivity of the
submanifold Z∗.
The solution of the problem is given by the control
(Fradkov et al., 1999; Miroshnik, 2002a)

u = − w2(z)− v, (30)

where w2 is an invariant control and v is a stabilizing
control, satisfying the condition v → 0 as ξ → 0. Let
us introduce additional hypotheses.

Assumption 3. For all x ∈ Z∗ it holds that

∂ϕ

∂x
f(x) ∈ span

{∂ϕ

∂x
g(x)

}
, rank

(∂ϕ

∂x
g(x)

)
= 1.

The assumption sets, in particular, that the invariant
control w2 can be found as a solution of the equation

fξ(0, z)− gξ(0, z)w2(z) = 0. (31)

Carry out transformation into the coordinates (ξ, z)
and obtain the task-oriented model of the controlled
system

ξ̇ = fξ(ξ, z) + gξ(ξ, z)u, (32)
ż = fz(ξ, z), (33)

where fξ = (Φ f)◦r(z, ξ), gξ = (Φ g)◦r(z, ξ). Introduce
an expansion of fξ and gξ:

fξ = fξ(0, z) +
∂fξ

∂ξ

∣∣∣
ξ=0

ξ + o1(ξ, z), (34)

gξ = gξ(0, z) +
∂gξ

∂ξ

∣∣∣
ξ=0

ξ. + o2(ξ, z). (35)

The model (32) under the control (30), where w2 satis-
fies (31), takes the form of the linear-like nonstationary
system

ξ̇ = A(z)ξ − b(z)v −
(
B(z)ξ + o2(ξ, z)

)
v

+
(
o1(ξ, z) + o2(ξ, z)w2

)
, (36)

where A(z) = (∂fξ/∂ξ) − B(z)w2, B(z) = (∂gξ/∂ξ),
b(z) = gξ(0, z). The main control problem is reduced
to finding a stabilizing control v.

Suppose that for z ∈ Z the matrices A(z) and b(z) are
bounded and choose v in the form (Fradkov et al.,1999;
Miroshnik, 2002a)

v = kT (z)ξ, (37)

where kT (z) is the row matrix of varying coefficients
defined as

kT (z) = bT (z)P (z), (38)

P = PT is a solution of the algebraic Riccati equation

AT (z)P (z) + P (z)A(z) −
−2P (z)b(z)bT (z)P (z) = 2λ(z)P (z) (39)

and the function λ(z) satisfies the inequality

λ(z) < min
i

Re λi {A(z)}. (40)

The model (36) takes the form (9), where Ac =
A − bkT = A − bbT P . In order to find conditions for
partial stability of the closed loop system (9),(33), we
can choose a Lyapunov-like function V (x) of the form
(11). Then, by using properties of algebraic Riccati
equations and Lemma 1, one can prove the following
result (Miroshnik, 2002a).

Lemma 3. Suppose that for all z ∈ Z, the pair
A(z), b(z) is completely controllable, and the function
λ(z) obeys inequality (40), then there exist numbers
π2 ≥ π1 > 0 such that equation (14) holds,

If, additionally, there exists λ0 > 0 obeying, for all all
z ∈ Z, inequality (15) then Lyapunov function V (x)
satisfies inequality (16).

Inequality (16) leads to the exponential estimate (18).
The latter yields the following conclusion.

Theorem 3. Suppose that Assumptions 1, 3 hold
and, in the neighborhood E(Z∗), the system (29) is
complete and satisfies the conditions of Lemma 3.
Then under the nonlinear control (30), (37) the set
Z∗ is an invariant set and an attractor of the system
(29).

Now consider a more general case and the disturbed
controlled system

ẋ = f(x) + g(x)u + ∆(x, t), (41)

assuming that parameters of the system and the gaol
set, as well as the disturbance ∆ = ∆(x, t), are not
known exactly. Then the spatial motion control prob-
lem is reduces to the following.

Control problem 2. Find a control law which provides
(i) partial input-to-state stabilization of the system
(41), (4);
(ii) partial robustification of the system (41), (4) with
respect to the disturbance ∆(x, t) and uncertainties of
the system.



Suppose that the functions ∆ and g satisfy Assump-
tion 2. It sets requirements for the disturbance ∆
which lead to simplification of the task-oriented model
and ensure existence of an exact control, solving the
problem. Under Assumption 1-3, the task-oriented
model of the disturbed system (41) takes the form

ξ̇ = fξ(ξ, z) + gξ(ξ, z)(u + w1) (42)

and (33), where w1 = w1(x, t), and there exists a func-
tion w2(z) derived from equation (31). Then an exact
solution of the control problem is given by the control
law

u = −w − v, (43)

where w = w1 + w2, and v is a stabilizing control,
chosen in the form (37)-(38).

When w1 and w2 are unknown one can make use of an
approximate static control law of the form

u = − ŵ − v, (44)

where ŵ is an estimate of w. Perform partial lineariza-
tion of the system and rewrite (42) in the form

ξ̇ = A(z)ξ − b(z)v + b(z)w̃, (45)

where w̃ is a residual defined as

w̃ = w − ŵ.

When the stabilizing control v is chosen in the form
(37)-(38), the error model (45) takes the form

ξ̇ = Ac(z)ξ + b(z)w̃. (46)

Under appropriate conditions of Lemmas 2-3 we obtain
inequalities (14) and

V̇ (x) + 2λ̂0V (x) ≤ 2vw̃. (47)

The latter expression leads to

˙|ξ|P + λ̂0|ξ|P ≤ |b(z)|P |w̃| (48)

and the estimate

|ξ(t)|P ≤ e− λ̂0t |ξ0|P + βw(t), (49)

where w =
∫ t

0
e− λ̂0(t−τ)|w̃(τ)|dτ. For bounded resid-

uals w̃, it holds that

lim
t→∞

ξ(t, x0) ≤ β

λ̂0

‖w̃‖∞. (50)

Therefore the following is proved.

Theorem 5. Suppose that Assumption 1-3 hold and,
in the neighborhood E(Z∗), the system (41) is com-
plete and satisfies the conditions (25),(40). Then the
system (41), (4) under the control (44) is partially
input-to-state stable and, for the globally bounded dis-
turbances w̃ = w − ŵ, is partially robust.

5. DESIGN OF DYNAMIC ROBUST CONTROL

Boundedness of the error ξ is achieved for bounded
residuals w̃ = w − ŵ. This usually implies that we
know a sufficiently exact estimate ŵ of the disturbance
w. In a possible case of an unboundeded residial, one
can make use of dynamic control laws.

Let the disturbance w be represented as an output of
the linear model:

ζ̇ = Fζ + dδ1, (51)
y = cT ζ, w = δ0 + y, (52)

where ζ ∈ Rm, (F, d, c) is a nondegenerate triple of
known matrices, and ζ(0) = ζ0, δ0(t), δ1(t) are consid-
ered as unknown components. We use a control law of
the form

u = − ŵ − v = −δ̂0 − cT ζ̂ − v, (53)

Here the stabilizing signal v is found in the form (37),
where the matrix of feedback gains k(z) is computed
according (38), and the estimates of ζ, y, w are gener-
ated by using the model

˙̂
ζ = F ζ̂ − κv + dδ̂1, (54)

ŷ = cT ζ̂, ŵ = δ̂0 + ŷ (55)

where κ is a column matrix of the gains to be found
later, δ̂0(t), δ̂1(t) are a priori known estimates of the
appropriate functions.

Defining the residuals

ζ̃ = ζ − ζ̂, ỹ = y − ŷ, w̃ = w − ŵ,

one can obtain an n+m-dimensional error model rep-
resented by equations (46), (37) and

˙̃
ζ = F ζ̃ + κv + dδ̃, (56)

ỹ = cT ζ̂, w̃ = ỹ + δ̃0, (57)

where δ̃0 = δ0 − δ̂0, δ̃ = δ − δ̂. Estimates of the errors
depend on the choice of the matrix κ which can be
carried out as follows.

Introduce a partial coordinate change for the error
model (46),(37),(56),(57), defining the transformed
vector

ξ = ξ + acT ζ̃ (58)

and the transformed output signal

v = kT ξ = v + αỹ, (59)

where α = kT a. Here the column vector a must be
found as a solution of the quadratic equation

−AcacT + acT F − bcT = 0, (60)

where
Ac = Ac + cT κadT . (61)



The model of the transformed error model takes the
form

ξ̇ = Acξ + bδ̃0, (62)
˙̃
ζ = F ζ̃ + κ kT ξ + dδ̃1, (63)

where
F = F − γκcT . (64)

Thus, the transformed error model is represented as a
serial connection of the block (62) with input δ̃0 and
output v and the block (63) with input δ̃1 and output
ỹ.

First, consider the block (63) and choose the storage
function

Ṽ (ζ̃) = ζ̃T Nζ̃, (65)

where N = NT is a solution of the algebraic equation

−(F + λ̃I)T N −N(F + λ̃I) = −2ccT , (66)

and λ̃ > 0 satisfies the inequality

λ̃ > −min
i

Re λi {F )}. (67)

This requirement and observability of the pair (F, c)
ensure the existence of the solution N > 0 of the equa-
tion (66) and therefore Ṽ (ζ̃) > 0.

Choose the matrix κ as

κ = (γ)−1N−1c. (68)

Substituting the latter into (61) and (64), we find

F = F −N−1ccT , (69)

Ac = Ac +
cT N−1c

α
adT . (70)

The latter is used for finding the vector a (see (60)).

Now, we analyze the properties of the transformed er-
ror model. Differentiating the storage function (65),
after appropriate substitutions one obtains

˙̃
V + 2λ̃Ṽ = 2(γ)−1vỹ + 2(dT Nζ)δ̃1. (71)

For the block (62),(59), define the storage function

V (ξ) = ξ
T
Pξ, (72)

where P (z) > 0 is a solution of equation (39). After
the differentiation with respect to time and appropri-
ate substitutions, we find

V̇ (ξ) + 2λV ≤ 2 vδ̃0, (73)

where

λ = λ̂0 − cT N−1c

α
|a|P |d|P .

Relations (71) and (73) lead to the following differen-
tial inequalities

|ξ̇|P + λ|ξ|P ≤ |b|P |δ̃0|, (74)

| ˙̃ζ|N + λ̃|ζ̃|N ≤ |b|P |κ|N |ξ|P + |d|N |δ̃1|, (75)

connected with the state ξ of the initial error model
by means of the expression

|ξ|P ≤ |ξ|P + α|ζ̃|N , (76)

where α > 0.

When δ̃1 = δ̃0 = 0, one can obtain that partial asymp-
totic stability of the system is achieved. In a more
general case, when the functions δ̃ and δ̃0 are globally
bounded, from (74)-(76) it follows that

lim
t→∞

|ξ(t, x0)|P = C0‖δ̃0‖∞ + C1‖δ̃1‖∞, (77)

where C0 > 0, C1 > 0.

Therefore the dynamic control (53)-(55) provides
boundedness of the external dynamics ξ(t) for the
globally bounded inputs δ0, δ1 and the required partial
robustification of the system (41).
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