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Abstract: Dynamical systems with active, or controlled, singularities are characterized
by constraints, either naturally present or created through actuation, capable of radically
changing the attainability set of the post-impact system state. The latter is achieved through
the admission of the impulsive control actions during the system engagement with the
constraint. The goal of the present work is: i) to introduce the f irst description of mechanical
systems with controlled singularities and sensing in the singular phase that admits control
over observations, and ii) to demonstrate on an example the computation of a sensor-based
optimal control law in the singular phase. It is shown that the optimal control in this class
of problems gives rise to new concepts: the interlaced singular phase and the multi-impulse
control signal. Copyright c©2005 IFAC
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1. INTRODUCTION

Rapid progress in fast sensing and actuation compati-
ble with the singular phases of a number of technolog-
ically signif icant systems has a potential of providing
qualitative jump in their performance. The resulting
systems dynamics, such as that of power systems un-
der faults (Kundur, 1993) and robotic manipulators
(J.W. Grizzle and Plestan, 2001), becomes, however,
rather nontrivial, and the impact games, such as ping-
pong, can help in providing a conceptual clarity to the
behavior of these systems. In these games, the player
can be viewed as generating a constraint (Pagilla
and Tomizuka, 1995), (Spong, 2001) and controlling
its properties during the very short duration engage-
ment phase with the ball. This player action gives
rise to a concept of active, or controlled, constraints
(Bentsman and Miller, 2003), either naturally present
or created through actuation, capable of radically
changing the attainability set of the post-impact sys-
tem state. The engagement phase of the system with
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such constraint can then be termed active singular-
ity. Based on these concepts, a new class of systems,
dynamical systems with active, or controlled, singu-
larities, and the corresponding rigorous modeling and
optimal control framework have been recently intro-
duced by the authors (Bentsman and Miller, 2003).

Here we consider, however, a new class of the impact
systems admitting the impulsive control during singu-
lar phase of their motion – systems with uncomplete
observations in the singular motion phase. The present
work extends the conceptual framework of (Bentsman
and Miller, 2003) to include the novel mode of behav-
ior - the interlaced singular phase.

2. PROBLEM STATEMENT

Let the controlled dynamical system be described
by the state vector x(t) = (xp(t), xv(t)), xp(t) ∈
Rn, xv(t) ∈ Rn, where vectors xp and xv are referred
to as the sets of generalized positions and generalized
velocities, respectively.

Suppose that system motion includes interaction with
some elastic constraint. Let the elastic deformation of



the constraint be parametrized by some coeff icient µ,
so that for f inite µ the constraint would admit a system
motion, although inhibited, within the area occupied
by it. Let the constraint-free domain be given by

{(xp, t) : G(xp, t) ≥ 0} (1)

where G(·) is a suff iciently smooth function.

2.1 Motion in the Natural and Singular Phases

Following (Bentsman and Miller, 2003) the system
motion is described by

ẋp(t) = F r
p (xp(t), xv(t), t),

ẋv(t) = F r
v (xp(t), xv(t), u(t), t)+

(2)

+µF rs
v (xp(t), xv(t), w

µ
2 (ξ, t), t, µ)I{G(xp(t), t) ≥ 0}+

+µF s
v (xp(t), xv(t), w

µ
1 (ξ, t), t, µ)I{G(xp(t), t) < 0},

where I{A} is an indicator of the set A, u(t) ∈ U ⊂
Rr is a control variable (a measurable function) in the
natural phase, U is a compact set, F r

p (xp, xv, u, t) and
F r
v (xp, xv, u, t) are the generalized forces in the nat-

ural phase, F s
v (xp, xv, w

µ
1 (ξ, t), t, µ) is a controlled

force arising from a contact with the constraint in the
inhibited area,wµ

1 (ξ, t) is a control signal in the singu-
lar phase, F rs

v (xp, xv, w
µ
2 (ξ, t), t, µ) is an additional

force arising in the case of interlaced singular phase
governed by a control signal wµ

2 (ξ, t) (a measurable
function). This force characterizes the impulsive ac-
tion in singular phase (Miller and Rubinovich, 2003)

Let in the singular phase, when G(xp(t), t) < 0, com-
ponents of the state vector (xp(t), xv(t)) be unobserv-
able directly, and it be possible to observe only signal
ξ(t) ∈ Rk. Then, the control variables in the singular
phase can be taken to be measurable functionals of the
sensor output signal ξ(t) and time.

2.2 Sensor Equations and Admissible Control in the
Singular Phase

To admit control of the sensing environment, let the
sensor output signal ξ(t) satisfy the equation

ξ̇(t) = µH(xp(t), xv(t), α
µ(ξ, t), t, µ)×

×I{G(xp(t), t) < 0} (3)

where αµ(ξ, t) is a control signal.

Let the motion in the singular phase begin at an instant
τ , where τ is the f irst instant when

G(xp(τ), τ) = 0,
d

dt

∣

∣

∣

∣

F r
p

G(xp(τ), τ) < 0. (4)

Denoting by γ any of the controls w1, w2, α, def ine
its dependence on t and µ in the singular phase as

γµ(ξ, t) =

{

γ(ξ,
√
µ(t− τ)), t ≥ τ,

0, otherwise.
(5)

Let the following Lipschitz condition takes place

|γ(ξ′, t)− γ(ξ′′, t)| ≤ L‖ξ′ − ξ′′‖t, L = const (6)

where

‖ξ‖t = ess sup
τ≤s≤t

|g(s)|, or ‖ξ‖t =
(
∫ t

τ

|ξ(s)| ds
)1/2

.

Definition 1. Admissible control wµ
1 (ξ, t) in a sin-

gular phase is a restricted measurable functional,
where dependence on τ, t, µ, ξ is given by (5) (6) and
a restriction has the form w

µ
1 (ξ, t) ∈W1 ⊂ Rr1 . Here

W1 is a compact set. Admissible controls wµ
2 (ξ, t),

αµ(ξ, t) and βµ(ξ, t) are def ined analogously.

It is assumed that the right hand sides of (2)-(3) are
suff iciently smooth to guarantee unique solution of
(2)-(3) for any admissible controls.

As in (Bentsman and Miller, 2003), the objective is to
describe the behavior of system (2)-(3) in both natural
and singular phases for µ ↑ ∞ and to f ind out if there
exists the appropriate limit for its solution.

3. SPACE-TIME TRANSFORMATION AND
LIMIT BEHAVIOR IN THE SINGULAR PHASE

According to (4), the singular motion phase begins at
the f irst time τ that the system engages the constraint.
Therefore, for a f inite value of µ there exists a non-
zero time interval of the constraint violation. The
representation of motion in singular phase can be
obtained with the aid of the following space-time
transformation (Bentsman and Miller, 2003)

s =
√
µ (t− τ), t ≥ τ,

yµp (s) = xp(τ) +
√
µ
[

xp(τ + µ−1/2s)− xp(τ)
]

,

yµv (s) = xv(τ + µ−1/2s),

ηµ(s) = ξ(τ + µ−1/2s),
(7)

The next theorem describes the limit behavior of vari-
ables (7) as µ→∞.

Assumption 1. Suppose that F s
v (analogously F rs

v )
satisf ies the Lipschitz condition in the following form:
there exists L > 0, µ0 > 0 such that for any
(xp, x

′

p, xv, x
′

v), t ∈ [0, T ], w1 ∈W1, and µ ≥ µ0

‖F s
v (xp, xv, w1, t, µ)− F s

v (x
′

p, x
′

v, w1, t, µ)‖ ≤
≤ L{‖xp − x

′

p‖+ µ−1/2‖xv − x
′

v‖}.
(8)

Theorem 1. Assume that:

1) for any (xp, τ) such that G(xp, τ) = 0 there exists

lim
µ↑∞

F r
p

( ȳp − xp
µ1/2

+ xp, ȳv, τ + µ−1/2s
)

=

= F r
p (xp, ȳv, τ),

lim
µ↑∞

µ1/2F s
v

( ȳp − xp
µ1/2

+ xp, ȳv, w1(η
µ, s),

τ + µ−1/2s, µ
)

= F̄ s
v (ȳp, ȳv, w1(η̄, s), xp, τ),

lim
µ↑∞

µ1/2F rs
v

( ȳp − xp
µ1/2

+ xp, ȳv, w2(η
µ, s),

τ + µ−1/2s, µ
)

= F̄ rs
v (ȳp, ȳv, w2(η̄, s), xp, τ),

lim
µ↑∞

µ1/2H
( ȳp − xp

µ1/2
+ xp, ȳv, α(η

µ, s),

τ + µ−1/2s, µ
)

= H̄(ȳv, α(η̄, s), xp, τ),

(9)



where convergence is uniform in any bounded vicinity
of (ȳp, ȳv, η̄, ζ̄, τ, s);

2) the limit system of differential equations, i.e.

˙̄yp(s) = F r
p (xp(τ), ȳv(s), τ),

˙̄yv(s) = F̄ s
v (ȳp(s), ȳv(s), w1(η̄, s), xp(τ), τ)+

+F̄ rs
v (ȳp(s), ȳv(s), w2(η̄, s), xp(τ), τ),

˙̄η(s) = H̄(ȳv, α(η̄, s), xp(τ), τ),

η̄(0) = ξ(τ)
(10)

has the unique solution on some interval [0, s∗ + ε],
where ε > 0 and

s∗ = inf
s>0
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. (11)

Then, if µ→∞,

(yµp (s), y
µ
v (s), η

µ(s), )→ (ȳp(s), ȳv(s), η̄(s))

uniformly on [0, s∗ + ε], and for all suff iciently large
µ there exists

s∗µ = inf
s>0
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(12)
such that s∗µ → s∗.

The single jump representation is given by Corollary.

Corollary 1. For suff iciently small ε > 0 on the inter-
val [0, τ + ε), solution of the original system (2) con-
verges to some discontinuous functions (x̄p(t), x̄v(t)),
such that x̄p(t) = xp(t), x̄v(t) = xv(t), t <

τ, and x̄p(τ+) = lim
µ↑∞

xp(τ + µ−1/2s∗µ) = xp(τ),

x̄v(τ+) = lim
µ↑∞

xv(τ + µ−1/2s∗µ) = ȳv(s
∗).

Definition 2.Admissible controlwµ
1 (ξ, t)

(

w
µ
2 (ξ, t)

)

for (2) is referred to as the multi-impulse control if
w1(η̄, s)

(

w2(η̄, s)
)

in (10) exists only on the disjoint
subset of the time subintervals within the interlaced
singular phase time interval corresponding to the sys-
tem motion within the inhibited domain.

This type of control is shown in the example of colli-
sion damping by the multi-impulse control signal.

4. MULTI-IMPULSE COLLISION DAMPING

4.1 System Representation

As an example, consider a ball of the unit mass col-
liding in a free fall with a racket of mass M moving

along the vertical axis with a constant speed, as shown
in Fig. 1. This system has the phase state vector Z =
(xp, xv, Xp, Xv), where xp, xv and Xp, Xv are the
positions and the velocities of the ball and the racket,
respectively. The area free of constraint is described

xvxp Xv

Xp

ball

racket

Fig. 1. The constraint-free motion phase

by the inequality

G(Z) = xp −Xp ≥ 0. (13)

In this area the equations of motion have the form

ẋp(t) = xv(t), Ẋp(t) = Xv(t),

ẋv(t) = −g, Ẋv(t) = 0,
(14)

where g is the acceleration due to gravity. In the inhib-
ited area, depicted in Fig. 2, the motion is described by
the equations

ẋp(t) = xv(t), Ẋp(t) = Xv(t),

ẋv(t) = −g − µF s
v (Z(t), µ),

Ẋv(t) = µM−1
[

F (t, µ) + F s
v (Z(t), µ)

]

,

(15)

where F s
v (Z(t), µ) is a visco-elastic force during the

contact of the ball and the racket described by

F s
v (Z(t), µ) = xp(t)−Xp(t)+2κµ−1/2

(

xv(t)−Xv(t)
)

,

(16)
and F (t, µ) could be interpreted as an external im-
pulsive control force acting on the racket during the
contact phase. This force admits the representation

F (t, µ) =
√
µw(

√
µ(t− τ)). (17)

Here µ > 0 is the elasticity coeff icient, 0 ≤ κ ≤ 1 is
the damping, τ is the impact time, andw(·) is a control
variable satisfying the constraint

|w(·)| ≤ w0 <∞. (18)

Suppose a player (or robot) has a possibility to mea-
sure the pressure on the racket during the contact
phase. It means that the sensor output signal ξ(t) is
equal to the visco-elastic force acting on the racket:

ξ(t) = xp(t)−Xp(t) + 2µ−1/2κ
(

xv(t)−Xv(t)
)

.

(19)
Equations (13)-(19) describe the continuous motion in
the case of µ <∞.

4.2 Modeling and Control Objectives

The modeling objective is to obtain the velocity jump
representation corresponding to the limit motion as
µ→∞. The control obejective is to f ind an impulsive
control law which minimizes the velocity of the ball
bounce after the impact.



Xv
ball

racket
Xp

xvxp

Fv
s

Fig. 2. The singular motion phase: motion in the
inhibited domain

Applying Theorem 1 yields the following system for
new variables (yp, yv, Yp, Yv, η), describing the mo-
tion in the enlarged space-time scale:

ẏp(s) = yv(s), Ẏp(s) = Yv(s),

ẏv(s) = −yp(s) + Yp(s)− 2κyv(s) + 2κYv(s),

Ẏv(s) =M−1
(

w(s) + yp(s)− Yp(s)+
+2κ(yv(s)− Yv(s))

)

, (20)

η(s) = yp(s)− Yp(s) + 2κ
(

yv(s)− Yv(s)
)

,

with the initial conditions:

yp(0) = Yp(0) = 0, yv(0) = xv(τ−), (21)

Yv(0) = Xv(τ−), η(0) = 2κ
(

xv(τ−)−Xv(τ−)
)

.

To address the objectives, introduce relative coordi-
nates q(s) = (qp(s), qv(s))

qp(s) = yp(s)− Yp(s), qv(s) = yv(s)− Yv(s),
and let u(s) , M−1w(s). Then, (20) takes the form

q̇p(s) = qv(s),

q̇v(s) = −u(s)− aqp(s)− 2aκqv(s),

ẏv(s) = −qp(s)− 2κqv(s) = −η(s),
(22)

where a = 1 + M−1, qp(0) = 0, and qv(0) =
xv(τ−)−Xv(τ−) < 0.

4.3 Optimal Control Problem

Suppose the visco-elastic force is characterized by the
so-called restitution (repulsive) property (Bentsman
and Miller, 2003), i.e. guarantees the repulsion of the
ball from the inhibited domain in a f inite time with-
out an external force. This means that the following
rebound conditions take place at the instant s∗ given
by (11):

qp(s
∗) = 0, q̇p(s

∗) = qv(s
∗) > 0. (23)

In this case, system (22) admits an explicit solution

qp(s) = e−λs

[

qv(0)
sin(ωs)

ω
−

−
∫ s

0

eλs
′ sinω(s− s′)

ω
u(s′) ds′

]

,

(24)

where λ = κa, ω2 = a − λ2 > 0, and, hence, the
restitution condition takes the form a−1/2 > κ .

Setting, without loss of generality, Yv(0) = 0, sup-
pose, f irst, that u(s) ≡ 0. Then, from (22),(24)

yv0(s
∗
0) = a−1yv(0)

(

M−1 − exp
(

− λπω−1
)

)

,

where a subscript 0 in yv0 and s∗0 corresponds to zero
control value. In view of yv(0) < 0, this implies that

(a) yv0(s
∗
0) > 0, if M > exp

(

λπω−1
)

,

(b) yv0(s
∗
0) < 0, if M < exp

(

λπω−1
)

,

(c) yv0(s
∗
0) = 0, if M = exp

(

λπω−1
)

.

In the case (c), the ball stops without any external
force. However, in the cases (a) and (b), the racket
needs to be forced to reduce the ball velocity at instant
s∗. In the latter two cases, it is natural to take

y2v(s
∗)→ min (25)

as a performance criterion. Applying the Pontrjagin’s
maximum principle to the optimal control problem
(22)-(25), HamiltonianH = H(qp, qv, yv, ψp, ψv, ψy, u)
takes the form
H = ψpqv −ψvu−

(

aψv +ψy

)(

qp+2κqv
)

→ max,
(26)

and the resulting optimal control is given by

ũ(s) = −u0 sign
(

ψv(s)
)

(27)

where u0 , M−1w0. Further on, the adjoint system
is given by

ψ̇p(s) = aψv(s) + ψy(s),

ψ̇v(s) = −ψp(s) + 2aκψv(s) + 2κψy(s),

ψ̇y(s) = 0, i.e. ψy = Cy = const,

(28)

and the terminal transversality conditions at s = s∗

take the form
2yv δyv+ψp δqp+ψv δqv+ψy δyv−H δs = 0, (29)

where δqp = 0 due to condition (23). This yields

2yv(s
∗) + Cy = 0, ψv(s

∗) = 0, H(s∗) = 0. (30)

Then,H(s∗) = 0 implies
ψp(s

∗)− 2Cy = 0, (31)

and (28) and (31) imply

ψ̇v(s
∗) = ψv(s

∗) = 0. (32)

Equation (28) for the adjoint variable ψv(s) that deter-
mines the sign of the optimal control signal has zero
terminal conditions and may be easily integrated back-
wards in time. Indeed, suppose Cy = −2y(s∗) 6= 0.
Then, def ining ϑ = s∗−s and ϕv(ϑ) = C−1y ψv(s

∗−
ϑ), it follows from (28) and (32) that

ϕ̈v(ϑ) + 2aκϕ̇v(ϑ) + aϕv(ϑ) = −1, ϕv(0) = 0.
(33)

The latter equation admits an explicit solution

ϕv(ϑ) = a−1
[

e−λϑ
(

cosωϑ+ λω−1 sinωϑ
)

− 1
]

.

(34)
It is easily seen that ϕv(ϑ) < 0 for ϑ > 0, so that
the optimal control does not change sign. Thus, at the
instant s∗ two events are possible:

(i) 0 < yv(s
∗) < yv0(s

∗
0) < |yv(0)|, implying Cy <

0 and, further on, ψv(s) = Cyϕv(s
∗ − s) > 0, which

yields the optimal control ũ(s) ≡ −u0. The racket
in this case is subject to the external impulse ps∗ =
−w0s

∗ in the negative direction of the coordinate axis.
However, the ball rebounds from the racket in the
positive direction. The external force impulse ps∗ in



this case is too small to stop the ball. Since the racket
remains behind the ball, the damping problem for the
case (i) is completed, with zero velocity of the ball not
attainable.

(ii) yv(0) < yv0(s
∗
0) < yv(s

∗) < 0, implying Cy > 0
and, further on, ψv(s) = Cyϕv(s

∗ − s) < 0, which
yields the optimal control ũ(s) ≡ u0. The racket in
this case is subject to the external impulse ps∗ = w0s

∗

in the positive direction of the coordinate axis, and
the ball retains the negative motion direction. In this
case, the external force impulse ps∗ is too small to stop
the ball as well, but the racket is now located in front
of the ball, permitting a continuation of the damping
problem solution.

In both cases, the terminal time s∗ is found by setting
the right hand side of (24) to zero, with u(s′) = −u0
or +u0, respectively. This gives

eλs
∗

= cosωs∗ + ω−1
(

λ∓ u−10 a qv(0)
)

sinωs∗.
(35)

The ball velocity increment is calculated as

∆yv(s
∗) = yv(s

∗)− yv(0) = −
∫ s∗

0

qp(s) ds.

Continuing the case (ii) solution, it is easily seen that
the application of the constant control u(s) = u0 after
instant s∗ yields the next collision after a time interval
T = 2qv(s

∗)u−10 with qv(s∗ + T ) = −qv(s∗) < 0
and qp(s∗ + T ) = 0 under the external force impulse
pT = w0T . It is seen that the phase vector (qp, qv, yv)
components values at s∗ + T can be considered as
new initial data followed by the case (ii). This process
can be repeated several times until the value of the
initial relative velocity gets into the interval q̂v ≤
qv(0) ≤ 0, where q̂v is some threshold velocity. When
the latter occurs, the ball gets stuck in the racket.
More precisely, it starts exhibiting damped oscillatory
motion, but inside an inhibited domain. Physically it
means that an inertia force acting on the ball due to
the racket acceleration is too large to permit the ball
to leave the racket. Fig.3 illustrates this case for the
following initial data:

a = 2, κ = 0.25, u0 = 0.3, qp(0) = 0, (36)

qv(0) =−0.0822, yv(0) =−0.3329, Yv(0) =−0.2507.
Increasing |qv(0)| leads to the increasing amplitude

of the damped oscillation of qp(s). When qv(0) = q̂v
is attained, the f irst local maximum of qp(s) reaches
zero level from below at some instant ŝ, yielding
qp(ŝ) = 0 and qv(ŝ) = 0. This gives equations for
ŝ and q̂v of the form

eλŝ = cosωŝ+ ω−1
(

λ+ u−10 aq̂v
)

sinωŝ,

0 = q̂v cosωŝ− ω−1
(

λq̂v + u0
)

sinωŝ.
(37)

This critical case is illustrated in Fig.4 for the initial
data (36), where Yv(0) = 0.2507 has the same value
and

qv(0) = q̂v = −1.2302, yv(0) = −1.4809, ŝ = 3.41.
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Fig. 3. Damped oscillations of relative coordinates qp
and qv in the inhibited domain
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Fig. 4. Critical case: qv(0) = q̂. Variation of coordi-
nates qp, qv and yv in the inhibited domain

The question now arises: what should the subsequent
control action be if q̂v ≤ qv(0) ≤ 0? It is plausible
that in this case the ball could be stopped. In the latter
case, however, the optimal control problem stated
above becomes degenerate due to appearance of an
additional terminal condition

yv(s
∗) = 0. (38)

Indeed, as it follows from (30), (31), this condition
givesCy = ψy(s

∗) = 0 and ψp(s
∗) = 0 leading to the

trivial solution of the adjoint system (28). It becomes,
therefore, necessary to reformulate the original control
problem, for example, by considering different perfor-
mance criteria. As an alternative criterion it is natural
to take minimization of the terminal time

∫ s∗

0

C ds→ min, C > 0 any constant. (39)

Hamiltonian, maximum principle, and an optimal con-
trol law have the same form (26), (27), (28) for new
time-optimal control problem (22), (23), (38), (39).
But due to (38) and (39), transversality conditions
have the form

ψv(s
∗) = 0, H(s∗) = C.

The last equation gives a relation



(ψp(s
∗)− 2κCy)qv(s

∗) = C.

Suppose Cy 6= 0. Then, denoting by Ψp(s) =
C−1y ψp(s), Ψv(s) = C−1y ψv(s) and setting C = Cy ,
it is easy to see that these variables satisfy (28) with
ψy(s) = 1 and terminal conditions

Ψv(s
∗) = 0,

(

Ψp(s
∗)− 2κ

)

qv(s
∗) = 1. (40)

As in (33), introduce an inverse time ϑ = s∗ − s and
denote Φv(ϑ) = Ψv(s

∗ − ϑ). Integrating the system
(28) in the inverse time under (40) gives

Φv(ϑ) = ϕv(ϑ) + e−λϑ
(

ωqv(s
∗)
)−1

sinωϑ, (41)

where ϕv(ϑ) from (34). Due to the additional term in
the rhs of (41), the function Φv(ϑ) changes the sign at
some instant s̃ in the segment [0, s∗]. This means that
the optimal control signal changes the sign as well.
Fig.5 illustrates the behavior of variables qp(s), qv(s),
and yv(s) for the same initial data. At the instant s̃
the curve qv has a sharp bend. It is seen that the
two-impulse control with impulses p1 = w0 s̃ and
p2 = −w0(s

∗ − s̃) stops the ball.
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Fig. 5. Variation of qp, qv and yv in the inhibited
domain in the case of two impulse control.

Finally, let us consider the case when at the moment
s∗ the ball and the rocket have zero relative velocity,
but the absolute velocity of the ball is still negative.
Taking this moment as the initial one, consider the
time-optimal damping problem with the initial data

qp(0) = 0, qv(0) = 0, y(0) = Yv(0) < 0.

This problem is solved with two-impulse control too.

Now, let us address the original task of using only the
sensor output to solve the damping problem. Since the
initial relative velocity qv(0) < 0 is unknown, it is also
not known which of the cases, (i) or (ii), takes place
from the beginning. For this reason, the f irst control
impulse should be negative, i.e. in the direction of the
initial velocity of the ball (u(s) ≡ −u0). Further, the
controller begins to integrate the sensor output signal
η(s) up to the time moment s∗ detected by the sensor.
On the basis of (22)-(24), this gives

J =

∫ s∗

0

η(s) ds =

∫ s∗

0

qp(s) ds. (42)

This integral is easily calculated and permits deducing
the initial relative velocity qv(0) from (42) by an
explicit, but rather cumbersome formula. On the bases
of qv(0) and (24) the value of qv(s∗) is calculated by

qv(s
∗) =

1

eλs
∗

[

qv(0) cosωs
∗−

(

λqv(0)−u0
) sinωs∗

ω

]

.

By def inition, the absolute ball velocity is yv(s∗) =
qv(s

∗) + Yv(s
∗). The velocity of the racket Yv(s) is

known to the controller. If yv(s∗) ≥ 0, the control pro-
cess is completed. If yv(s∗) < 0 the control process
is continued by the algorithm describing above until
the ball stops. According to Def inition 2, the resulting
control signal is the multi-impulse one.

From the solution of the limit problem in the singular
phase it follows that at an instant τ the controller must
form, on the basis of the sensor output signal, a f inite
number of force impulses applied to the racket, with
the f irst one directed along the initial velocity of the
ball.

5. CONCLUSION

This work presents the f irst input-output model of a
dynamical system with active singularity that incor-
porates both sensing and actuation and admits ob-
servations control. The framework of (Bentsman and
Miller, 2003) is extended to accommodate solutions
of the optimal control problems in the singular phase
through the introduction of the interlaced singular
phase and the multi-impusle control concepts. An ex-
ample is given that demonstrates the use of the frame-
work proposed for the design of the observations-
based multi-umpulse optimal control law for this class
of systems.
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