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Abstract: The efficiency of the robust estimation approach based on the information about 
the variances of the signal itself and its several derivatives is analyzed. Comprehensive 
comparison of robust and optimal estimators is performed. It is shown that the robust 
estimator suggested provides the reliable and precise signal estimation in the presence of 
noise.  The obtained theoretical results are illustrated with an example of an airborne 
gravimetry problem. Advantages and drawbacks of robust and optimal estimators are 
demonstrated for various operating conditions.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
For many applications it is necessary to estimate the 
valid signal using noisy measurements )(ty  of the 
form 
 

)()()( tntxty += ,            (1) 
 
where the valid signal )(tx  and the measurement 
noise )(tn  are assumed to be stationary, centered and 
uncorrelated relative to each other stochastic 
processes. 
 
Specifying stochastic models for )(tx , )(tn  the 
estimation problem can be formulated in the 
framework of the optimal estimation theory (Van 
Trees, 1968). According to this theory, the optimal 
(minimum variance) estimate x̂  provides the 
minimum for the following criterion: 

( )[ ]2x̂xEDe −= , 

where  E  - the mathematical expectation. 
 
Minimizing this expression for the known spectral 
densities of the signal )(ωxS  and measurement noise 

)(ωnS , it is not difficult to derive the optimal 
estimator transfer function (TF) )( ωjH opt  and the 
error variance corresponding to it (Van Trees, 1968). 
Unfortunately, it is not infrequent that the reliable 
information about the spectral densities )(ωxS  and 

)(ωnS  is not available. 
 
It is known that the disagreement between the actual 
model and the accepted mathematical one often 
causes not only difference between expected 
accuracies and their actual values, but also 
divergence of the filter, i.e., unlimited error in 
filtering. In order to cope with this problem the 
design of estimators which provides an upper bound 
on the error variance for all admissible modeling 
uncertainty has received much attention over the past



 

     

years (Geromel, 1998; Shaked and  Souza, 1995; 
Kassam and Lim, 1977). These estimators are 
referred to as cost-guaranteed (often robust) 
estimators and can be regarded as an extension of the 
standard optimal estimator to the case of uncertain 
models. In addition great interest was attracted to the 
estimators which minimize the H∞ – norm of the 
spectral density of the estimation error (Nagpal and 
Khargonekar, 1991; Grimble and Elsayed, 1990).  
The main advantage of using an H∞ estimator in 
comparison with a minimum variance estimator 
(Wiener or Kalman) is that no statistical models of 
process and measurement noises are needed. The H∞ 
estimator also tends to be insensitive to the model 
uncertainty (Theodor,  et. al., 1994). Moreover, the 
model uncertainty can be included in the H∞ 
estimator synthesis to guarantee an H∞ performance 
(Li and Fu, 1997).  
 
It is remarkable that all these estimators are designed 
for the “nominal” signal model and for the given 
uncertainty structure.  The main distinction of the 
approach suggested in this paper is that instead of 
spectral densities to describe signals, the a priori 
information about signals is represented by the 
numerical characteristics such as variances of the 
signal itself and its several derivatives. Only these 
numerical characteristics are used in synthesizing an 
estimator. Such information about signals is reliable 
and can be obtained even from the heuristic 
considerations. Henceforward such estimator will be 
called robust. 
 
The subsequent discussion is presented as follows.  
Chapter 2 is devoted to the statement and solution of 
the estimation problem in the framework of the 
robust approach suggested. In Chapter 3 the robust 
and optimal estimators are compared from the 
viewpoint of accuracy and sensitivity by an example 
of the most commonly encountered class of 
problems. In the last chapter the robust estimator 
design approach as outlined in the previous chapters 
is applied to the problem of airborne gravimetry 
(Stepanov,  et. al., 2002, Kulakova, et al., 2004). 
 
 

2. ROBUST APPROACH 
 
In the suggested robust approach the model for the 
signal is represented by the variances of the signal 
itself and its several derivatives (Nebylov, 2004), 
related to a particular spectral density by the 
following expressions:  
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It is clear that numerous spectral densities will fit 
these characteristics.  
 
The problem of the estimator development in the 
framework of the robust approach is reduced to the 
determination of the estimator TF when only these 
numerical characteristics are given. 

It is obvious that in this case it is impossible to find 
the error variance eD , however, it is possible to 

estimate its upper bound eD  for the prescribed TF 
(Nebylov, 2004) as follows:  
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where { }m
ia 0 , { }ljb 1  [ )∞∈ ,0  are the TF coefficients, 

ω= js  is a Laplas operator. The value of  eD  
depends on these coefficients and the specified 
numerical characteristics of the signal (2). The 
problem of robust estimator development is reduced 
to the determination of the TF coefficients which 
minimize the upper bound eD . This problem is 
usually solved with the use of numerical search 
methods for the function extremum (for example, by 
using the function “fminsearch” in MATLAB).  
 
The orders l  and m  can be determined from the 
heuristic considerations for each specific problem to 
be solved. In the general case the order of the highest 
of the specified derivatives of the valid signal 
determines the spectral density inclination in the 
high-frequency domain, and hence, the order of the 
estimator that should be used for the estimation of 
the signal with such spectral density. Therefore, 
generally, the order of the estimator must not be 
lower than the order of highest specified derivatives 
of the valid signal. 
 

Since it is the upper bound eD  that should be 
minimized in synthesizing the estimator, the 
estimator will provide the guaranteed estimation of 
the signals that are given by model (2). In so doing it 
should be remembered that the actual error variance 

eD  will not exceed the value eD . 
 
 

3. COMPARISON OF THE ROBUST 
 AND OPTIMAL ALGORITHMS 

 
In this chapter the robust and optimal estimators are 
compared for the case when the variances of the 
valid signal itself and its first derivative are given.  
The measurement noise is assumed to be an N  
intensity white noise. The robust estimator TF for 
this problem will have the first order and will be 
represented as: 
 

sa
bsH r +

=)( .                         (4) 

 
The values of the parameters  a  and b  depend on 
the specific values of the N , 0D  and 1D . 
 
In order to design an optimal estimator it is necessary 
to specify the spectral density for the valid signal. In 
so doing the only restriction is that the spectral 
density must comply with condition that the signal be 



 

     

differentiable. For definiteness, the valid signal is 
assumed to have the spectral density as the 
differentiability second-order process with the 
correlation function  
 

)sin(cos)( 2 τβ
β
α

+βτσ=τ τα−ek ,         (5) 

 

where 2σ  is the signal variance; β  is the prevailing 
frequency and α  is the attenuation factor. Such 
signal can describe, in particular, the change of 
object altitude. The expressions below hold for it: 

2
0 σ=D  ( )222

1 β+ασ=D . 
 
The peculiar features of the robust approach will be 
investigated and compared to those of the optimal 
approach when the signal described by the model (5) 
and measurements contain a white noise. In this case 
the following parameter values are assumed to be 
given: 1=α  s-1; π=β 2  s-1; 1=σ  m; 01.0=N  m2s. 
 
The estimator accuracy and its sensitivity to the 
disagreement between the actual model and the 
accepted mathematical one were investigated by 
simulation. 
 
The comparison in accuracy has shown that the loss 
in the accuracy of the robust estimator against the 
optimal estimator does not exceed 20 - 30 % in the 
rms (root- mean-square) error. As this takes place the 
rms estimation error for the optimal estimator is 

34.0=σe  m, the upper bound of the rms estimation 
error for the robust estimator is  44.0=σe  m, and 
the rms error that ensures the robust estimator for the 
signal described by model (5) is 41.0=σer  m. 
 
In the investigation of the estimator sensitivity under 
the conditions of varying signal parameters it was 
assumed that the values β  (prevailing frequency) 

and 2σ  (variance) are exactly known but the value 
of the attenuation factor α  (or the correlation 
interval α=τ /1 ) is uncertain. The influence of the 
parameter α  on the estimation accuracy is shown in 
Fig. 1 when the uncertainty range is given as  
α  = 0.1 – 15 s-1. 
 
From Fig.1 it is clear that the robust estimator is low-
sensitive to the change of the attenuation factor α . 
In the whole uncertainty range its rms error only 
increased by the 24%, at the same time the rms error 
of the optimal estimator increased by two times. 
 
In Fig.1 the influence of the parameter α  on the 
estimation accuracy is also shown for the H∞ 
estimator (Nagpal and Khargonekar, 1991) and 
minimax estimator (Kassam and Lim, 1977).  In the 
framework of the minimax approach the optimal 
solution is developed for the worst input signal 
belonging to the preset class.  As follows from Fig.1, 
the  worst  input  signal  (that provides  the maximum  
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Fig.1. Influence of the parameter α  on the 

estimation rms error. 1 – The optimal estimator 
for 1=α ; 2 – the robust estimator; 3 – the H∞ 
estimator (level of noise attenuation γ = 0.12); 4 – 
the minimax estimator; 5 – the estimator optimal 
for the current value of α . 

 
rms estimation error) for the case that the β  value is 
known, is the signal with the minimum correlation 
interval. This means that the minimax estimator will 
correspond to the optimal estimator when   

15* =α  s-1. The H∞ estimator is designed to 
minimize the peak of the estimation error spectrum 
and can be also interpreted as a minimax problem 
where the effect of the worst disturbances (noises) of 
finite energy on the estimation error is minimized. 
The H∞ and Kalman estimators have a similar 
observer structure, but different estimator gain 
values. From Fig.1 it follows that for the example 
under consideration the robust and minimax 
estimators are practically the same in the left part of 
Fig. 1, while in the right part the robust estimator is 
close to the H∞ estimator. 
 
It is interesting to find the spectrum of the valid 
signal )(ωrS , observed together with a white noise, 
for which the synthesized robust estimator will be 
optimal. The solution of this problem leads to the 
“robust” spectral density )(ωrS  of the form: 
 

22 )(
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Thus the robust estimator is optimal for the first-
order process.  
 
If the a priori information about the valid signal is 
represented only by the parameter 1D , the 
coefficients a  and b in TF (4) will be equal. Then 
the “robust” spectral density )(' ωrS  will correspond 
to the random walk (integral of the white noise). 
 
It should be noted that neither the model )(ωrS  nor 

the model )(' ωrS  belongs to the preset class of input 
signals  (2)  because the  first model has an unlimited  
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Fig.2. Signal spectral density )(ωS  (1) and the 

“robust” spectral densities )(' ωrS (2), )(ωrS  (3). 
 
 

1D  and the second, in addition to it, an 
unlimited 0D .  
 
Fig. 2 shows the spectral density of the valid signal 
and the “robust” spectral densities )(ωrS  and 

)(' ωrS . In order to estimate the value of the 
information about the additional variances of the 
derivatives of the valid signal, special consideration 
must be given to how close the curves )(ωrS  and 

)(' ωrS  are in the vicinity of their cross point with the 

measurement errors. It is clear that the curve )(' ωrS  
is  an  approximation  of  the  spectral density )(ωrS  
(that is, it represents the rectified  curve )(ωrS  in the 
logarithmic scale) at its cross point with the line, 
corresponding to the level of the measurement noise. 
Thus, the robust algorithm is mainly determined by 
the highest of the specified variances of the 
derivatives of the signal. 
 
It should be noted that in the case when the variance 
of the second or the third derivative of the signal is 
given (only one), the “robust” spectral density will 
correspond to the second or third integral of the 
white noise, respectively.  
 
The solutions of the applied problems show that the 
application of the models in the form of integrals of 
the white noise for the sensor description is a very 
efficient because it allows developing reliable and 
simple algorithms (Chelpanov, et.al., 1978, Tupysev, 
2004). But it is necessary to remember that in the 
robust approach suggested the properties of the 
signal under estimation are initially assumed to be 
different from those of the models in the form of 
integrals of the white noise. 
 
 
3. THE PROBLEM OF AIRBORN GRAVIMETRY 
 
The gravity anomaly (GA) estimation problem 
aboard an aircraft is solved by using the data from a 
gravimeter and phase measurements of altitude from 

the differential satellite navigation system (DSNS) 
(Stepanov, et al., 2002, Kulakova, et al., 2004). The 
data from the DSNS is used to eliminate the 
unknown altitude values h . For this purpose the 
difference between the second integral of the 
gravimeter readings and the altitude from the DSNS 
is formed. The differential measurements can be 
presented as follows (Stepanov, et al., 2002, 
Kulakova, et al., 2004):  
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,       (7) 

 
where g~  is the  gravity anomaly; gδ  is the 
gravimeter error; h  is the unknown altitude values 
and hδ  is the error in DSNS measurements. 
 
The estimation problem consists in obtaining GA, 
using the differential measurements (7). 
 
The survey data for the investigations was obtained 
with the use of the gravimeter developed in the CSRI 
Elektropribor (Stepanov, et al., 2002) and dual-
frequency geodetic Novatel receivers. It was shown 
that the errors in phase measurements are mainly of 
white-noise character with the intensity (0.005m)2s 
and the gravimeter errors can be described as a white 
noise with the intensity gR = (5mGal)2s. 
 
To obtain the estimation algorithm it is necessary to 
specify a model for GA. A lot of various GA spectral 
densities have been used to describe it (Jin, et al., 
1997). But usually only  two parameters are preset 
for them: the variance of GA 2~0

~ ggD σ=  and the 

value reverse to the correlation interval α  (which is 
equivalent that the variance of the first derivative for 
GA 1

~gD  is given). At the same time the adequacy of 

the model is of great relevance for airborne 
gravimetry, as GA changes with the change of 
altitude. Below are the three models for GA: the 
Jordan model (Jordan, 1972) (widely used in the 
problems that require stochastic description of GA), 
random walk (the simplest of the models used to 
describe GA) and the model represented by two 
parameters 0

~gD , 1
~gD . 

 
GA spectral density corresponding to the Jordan 
model is shown in Fig.3 and is given by the 
following expression 
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The random walk is an unsteady process, but 
formally it can be presented as a process with 
spectral density of the form: (see Fig.3) (Chelpanov, 
et al., 1978): 
 

2~~ /)( ω≈ω wgwg qS .               (9) 
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Fig.3. GA spectral densities and measurement errors 

for g~∇ =10 mGal/km, g~σ =30 mGal, V =50 m/s. 
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Fig.4. AFC for vertical acceleration for the estimator  

optimal for the Jordan model )(~
ωjH  and for the 

robust estimator )(~
ωjH r . 

 
The process noise intensity wgq~  in model (9) can be 

found  from  the equation Vlgq wg
2~ )~(∇= , where V  

is the speed of the aircraft, lgg ∂∂σ=∇ /~~  is the rms 

value of the gravity increment at a distance of l , 
which is assumed to be equal to 1 km. For the Jordan 
model the value g~∇  is related to the values g~σ  and 

α  by the expression 2
~

22 2~
gg σα=∇ . 

 
The optimal estimator for the GA described by the 
Jordan model will have the fifth order, whereas in the 
case of the GA represented as the integral of the 
white noise, it will have the third order.  
 
The solution of the problem in the framework of the 
robust approach suggested has led to the third-order 
estimator. At the same time the TF for the vertical 

acceleration )(1)(~
2

sH
s

sH rr =  turned out to be 

similar to the classical low-pass filter. It had flat 
vertex and an inclination of 60 dB/dec in the high-
frequency domain (Kulakova, et al., 2004). The 
amplitude-frequency characteristics (AFC) for the 
robust estimator and the estimator optimal for the 
Jordan model are shown in Fig. 4. The existence of 

peaks for the optimal estimator AFC makes it too 
sensitive to an increased noise power at the 
frequencies where the AFC is high. It is also 
sensitive to the change of the accepted model that 
causes decrease of the valid signal energy in this 
frequency range. Therefore, from the intuitive point 
of view, the robust estimator is low-sensitive. 
Although no special measures are taken with this aim 
when it is being synthesized.  
 
Table 1 presents the rms estimation errors for 
different rms values of the derivative for GA – 3, 5 
and 10 mGal/km. In calculations it was assumed that 

g~σ =30mGal. The aircraft speed was assumed to be 
equal to V =50m/s, which is typical for an 
aerogravimetric survey. 
 

Table 1. Rms estimation errors for GA, mGal 
 

g~∇ , mGal/km 3 5 10 

Optimal algorithm for 
the Jordan model, eσ  2 3.1 5.5 

Optimal algorithm for 
Wiener process, eσ  2.9 4.4 7.8 

Robust algorithm, eσ  2.8 4.1 6.7 

Robust algorithm, erσ  2.8 3.9 6.4 
 
The robust estimator is characterized in Table 1 by 
two parameters: the upper bound of the rms 
estimation error eσ  and the rms error erσ  that 
ensures the robust estimator for GA described as the 
Jordan model. The comparison in accuracy shows 
that the estimators have close rms error values. For 
the three selected values of the GA derivatives 

g~∇  = 10, 5, 3 mGal/km, the loss in accuracy of the 
robust estimator against the estimator optimal for the 
Jordan model is 20, 25 and 30% in the rms error, 
respectively. This difference in accuracy between the 
estimators at variation of the derivative value g~∇  is 
caused by the fact that the decrease of the value g~∇  
results in narrowing of the spectral density )(~ ωgS . 
This allows narrowing the pass band of the estimator 
optimal for the Jordan model, but the robust 
estimator must take into account all the signals 
belonging to the preset class.  
 
It should be noted that for the entire class of input 
signals with the preset values 0

~gD , 1
~gD  accepted at 

the synthesis of the robust estimator , the estimation 
error will not exceed the value eσ .  It should also be 
taken into consideration that the estimator adjusted 
for the random walk provides the rms error even 
higher than the value eσ . 
 
It is interesting to note that the information about GA 
variance 2

~gσ  had little influence on the synthesis of 

the robust algorithm when the variance of the first 



 

     

derivative for GA ( 1
~gD ) was known. This means 

that if only this parameter containing the information 
about both the variance and the correlation interval is 
preset, the upper bound eD  will vary slightly in 
comparison with the case when two parameters 
( 0

~gD , 1
~gD ) are preset. 

 
Besides, the investigations have shown that the 
robust estimator can be approximately considered as 
the estimator corresponding to the solution of the 
optimal estimation problem when the GA is 
described as a random walk. The “robust” spectral 
density only differs from model (9) in the value of 
the process noise intensity wgq~ . 
 
Thus, the robust approach suggested allows 
developing an estimator that will have the features 
similar to those of the estimator adjusted for the 
model represented as the integrals of the white noise, 
but at the same time it will take better account of the 
real signal properties. 
 
 

7. CONCLUSIONS 
 
Currently it is more and more frequent that the 
designers focus their attention on the efficiency of 
signal estimation in the case when the reliable 
information about the characteristics of these signals 
is not available. To achieve guaranteed accuracy, 
estimators can be adjusted to unsteady models 
represented as integrals of a white noise. Then as 
shown in the work by Tupysev (2004) the estimators 
remain steady in operation even with piecewise 
constant behavior of real processes and in the same 
time the estimation error for stationary processes will 
not exceed a preset level. 
 
However, there arises a problem of choosing the 
process noise intensity in a simplified model and the 
order of integration of the white noise. One of the 
possible ways for specifying a model of the signal as 
integrals of a white noise is rectification of the 
spectral density of the valid signal in the vicinity of 
its cross point with measurement errors (Chelpanov, 
et.al., 1978). In this case the simplified model will 
have the same order as the ancestor model. It is clear 
that the inadequacy of the ancestor model will affect 
the simplified model. The robust approach suggested 
for the estimator designing makes use of such 
numerical characteristics as the signal variance, 
variance of speed variation or variance of 
acceleration variation.  It is much easier to obtain 
these values from the available experimental data 
than the spectral density of the signal. The robust 
estimator will lose to the optimal estimator in 
accuracy to a small extent, but it will ensure reliable 
and efficient estimation of signals, because it is 
adjusted to the unsteady models presented as 
integrals of a white noise. That has been 
demonstrated by an example of an airborne 
gravimetry problem (Kulakova, et al., 2004). 
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