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Abstract: We consider adaptive control problems in the presence of nonlinear
parametrization of model uncertainties. An approach that foregoes on the need
for domination in the control loop during adaptation is proposed. Our approach
is based on the notions of attractivity, limit sets, equilibria, and multistability
from the theory of nonlinear dynamical systems rather than on the conventional
method of Lyapunov functions. As a result of this, our algorithms are applicable to
general smooth non-monotonic parametrization and do not require any damping
or domination in control inputs. Copyright c© 2005 IFAC
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1. INTRODUCTION

Nonlinear parametrization of the uncertainty is
traditionally addressed in the adaptive control lit-
erature using either domination functions (Marino
and Tomei, 1993; Lin and Qian, 2002a; Lin and
Qian, 2002b) or damping of the unknown non-
linearity (Loh et al., 1999). Yet, in a wide range
of applications this is undesirable desirable as it
leads to overshooting, fast wear of the actuators,
waste of energy, and undesired chattering. A typi-
cal example is traction/braking control. Unknown
tyre-road conditions enter into the equations of
the slip dynamics as uncertainties that are non-
linear in parameters (Pacejka and Bakker, 1993;
Canudas de Wit and Tsiotras, 1999).

In bio-engineering, the motivation to use non-
conventional adaptation mechanisms is even stron-
ger. Physiological considerations motivate non-
dominating adaptation at the level of the single
neural units (Webster et al., 2002), of which the
mathematical models are nonlinearly parameter-
ized (Dayan and Abbott, 2001).

Problems like these call for gentle adaptation in
nonlinear parameterized systems. Present solu-
tions, however, are either local (Karsenti et al.,
1996), or assume monotonic parametrization of
uncertainties (Tyukin, 2003; Tyukin et al., 2003b).

At the same time, conventional design methods in
adaptive control theory often favor a Lyapunov-
based methodology (Narendra and Annaswamy,
1989; Miroshnik et al., 1999) for its “continuity
property”: small perturbations in initial condi-
tions result in small deviations from equilibrium.
When adaptive control is required, however, de-
viations in the parameters are likely to be large.
Therefore, the requirement of Lyapunov stability
does not seem to be necessary unless it provides
specific advantages in applications in addition to
mere asymptotic reaching of the control goal.

Adaptation processes in many physical and bio-
logical phenomena are far from being stable in
conventional sense (for example, tremor in the eye
(Martinez-Conde et al., 2004), perceptual switch-
ing (Ito et al., 2003)). It is often the unperturbed



dynamics in these systems that is not asymptot-
ically stable (Moreau and Sontag, 2003; Corral
et al., 1995). The relevance unstable regimes for
engineering has been discussed, for instance, in
(Kaneko and Tsuda, 2000; Kaneko, 1994). These
examples motivate us to abandon conventional
Lyapunov methodology for problems of adapta-
tion in nonlinear systems.

We start with a review of the design strategies
for adaptive systems with nonlinear parametriza-
tion of the uncertainties, showing that in general
case conventional Lyapunov-based design leads to
domination functions in control. As an alternative
we suggest a nonlinear dynamics framework in
which we replace the stability requirement with
mere reaching a neighborhood of the target set.
We provide adaptive control algorithms capable
of steering the system state to a small neigh-
borhood of the target set. The resulting control
algorithms involve neither domination functions
nor additional damping of unknown nonlinearity.

Throughout the paper we use the following no-
tations. Symbol x(t,x0, t0) denotes solution of a
system of differential equations starting at the
point x0 at time instant t0; symbol Cr denotes the
space of r times differentiable functions; symbol
R stand for the space of reals; R+ defines non-
negative real numbers, symbol Im denotes image
of the map. We say that ν : R+ → R belongs
to L2 iff L2(ν) =

∫∞

0
ν2(τ)dτ < ∞. The value

‖ν‖2 =
√

L2(ν) stands for the L2 norm of ν(t).
Function ν : R+ → R belongs to and L∞ iff
L∞(ν) = supt≥0 ‖ν(t)‖ < ∞, where ‖ · ‖ is the
Euclidean norm. The value of ‖ν‖∞ = L∞(ν)
stands for the L∞ norm of ν(t). Symbol Uǫ(x)
denotes the set of all x′ : ‖x−x′‖ ≤ ǫ. Let X ⊂ R

n,
distance dist(x,X ) = infx′∈X ‖x − x′‖. Symbol
Uǫ(X ) denotes the set {x′ ∈ R

n| x′ : dist(x′,X ) ≤
ǫ}. Symbol Lfψ stands for the Lie-derivative of
function ψ(x) w.r.t. the vector field f(x).

2. PROBLEM FORMULATION

Let the uncertain system be given as follows:

ẋ = f(x,θ) + g(x)u, x0 ∈ Ωx (1)

where x ∈ R
n is state vector, f : R

n × R
d → R

n,
g : R

n → R
n are C1-smooth vector-fields, θ ∈

Ωθ ⊂ R
d is a vector of parameters, u is control

input, and Ωx ⊂ R
n is the set of initial conditions

x0. Functions f , g are known, the vector θ is
unknown, g(x) is bounded, and the control goal
is to reach asymptotically the following set:

{x ∈ R
n|x : ψ(x) = 0}, ψ ∈ C2 (2)

In addition to (2) we will require that

ψ(x(t)) ∈ L∞ ⇒ x(t) ∈ L∞ (3)

This ensures that bounded deviations from the
target set result in the bounded state x(t). In
addition we assume that |Lg(x)ψ(x))| ≥ δψ > 0.
Let us select the class of admissible feedbacks
which can compromise between performance and
domination issues. The most natural way is to
define this class on the ground of the certainty-
equivalence principle. Consider control function

u(x, θ̂) = (Lgψ(x))−1(−Lf (x, θ̂)ψ(x)−

ϕ(ψ) + υ(t))
(4)

which transforms system (1) into the error model

ψ̇ = f(x,θ) − f(x, θ̂) − ϕ(ψ) + υ(t), (5)

where f(x,θ) = Lf (x,θ)ψ(x), ϕ ∈ Cϕ ⊂ C0 :
R → R and ϕ(ψ)ψ > 0 ∀ ψ 6= 0, υ, d : R+ → R.
The desired dynamics of the system is given by
equation ψ̇ = −ϕ(ψ), and υ(t) stands for auxiliary
control or disturbances depending on the context.

Definition 1. Adaptive control law (4) is called
non-dominating in class Cϕ if for any ǫ > 0

there exists such function θ̂(x, t, δ(ǫ)) ∈ Ωθ, δ(ǫ) :
R+ → R, and time t∗ that |ψ(x(t,x0, t0))| < ǫ for
any t ≥ t∗, x0 ∈ Ωx, θ ∈ Ωθ, ϕ ∈ Cϕ and υ(t) ≡ 0.

In the present study we will restrict class Cϕ to
the following class of functions:

Cϕ(k) = {ϕ : R → R| ϕ ∈ C1,

ϕ(ψ)ψ ≥ ψ2k, k ∈ R+}
(6)

The fact that adaptation is non-dominating in this
class of functions means that for any arbitrary
small gain k > 0 in feedback ϕ(ψ) = kψ there

exists function θ̂(x, t, δ) such that the control goal
is reached in finite time. In order to specify the
desired performance of the adaptive algorithm
itself we require that θ̂(x, t, δ) does not change

along the manifold f(x,θ)−f(x, θ̂) = 0 and norm

‖θ − θ̂‖ does not grow with time.

In conventional certainty-equivalence adaptive
control the problem of adaptation is usually
viewed as a problem of design of a function
A(ψ,x, θ̂, t), such that solutions of

˙̂
θ = A(ψ,x, θ̂, t) (7)

together with (4) ensure the goal relation (2).

Function A(ψ,x, θ̂, t) should not depend on un-
known θ, or require derivative ẋ. The standard
way to solve this problem for υ(t) ≡ 0 is to design

function A(ψ,x, θ̂, t) such that ψ(x) = 0, θ̂ = θ

is a stable manifold in the Lyapunov sense.

In general nonlinear setup, however, this condition
is hardly ever met for every θ ∈ Ωθ and x(t0) ∈
R
n. To show this consider (1)–(7) as follows



(

ψ̇
˙̃
θ

)

=

(

−φψ F(x,θ, θ̂)

Aψ(ψ,x, θ̂, t) 0

)(

ψ

θ̃

)

+

(

1
0

)

υ(t), θ̃ = θ − θ̂

(8)

where functions φψ, F(x,θ, θ̂), Aψ(ψ,x, θ̂, t) fol-
low from Hadamard lemma 1 . Unlike in the lin-
ear parametrization case, explicit dependance of
function F(x,θ, θ̂) on unknown θ does not allow
to compensate for uncertainty by choosing appro-
priate function Aψ(ψ,x, θ̂, t) in (8). Therefore, in
general, it is necessary to use additional control
input υ(t) in order to ensure Lyapunov stability
of (8) and that ψ(x) → 0 as t → ∞. Success of
this strategy is reported in (Loh et al., 1999; Lin
and Qian, 2002a; Lin and Qian, 2002b).

One step forward towards obtaining non-domi-
nating adaptation is to reformulate the problem
as follows: design function θ̂(x, t) such that either

lim
t→∞

f(x(t),θ) − f(x(t), θ̂(x(t), t)) = 0, (9)

or

f(x(t),θ) − f(x(t), θ̂(x(t), t)) ∈ L2 (10)

hold 2 . One possible way to achieve goal (9),
(10) is to use information about the difference

f(x,θ)− f(x, θ̂(x, t)) explicitly in the adaptation
algorithm rather than using external control υ(t).
For a class of nonlinear parameterized systems
this additional information can be introduced into
adjustment schemes by mere structural changes in
the adjustment law. In particular it is suggested
in (Tyukin, 2003) to use adaptive algorithms
in differential-integral or finite form instead of
differential form. The extended system in this case
can be described as follows:
(

ψ̇
˙̃
θ

)

=

(

−φψ F(x,θ, θ̂)

0 −F(x,θ, θ̂)α(x, t)

)(

ψ

θ̃

)

, (11)

where F(x,θ, θ̂)α(x, t) is positive semi-definite
time-varying matrix. Sufficient conditions for ex-
istence of such algorithms are given in (Tyukin
et al., 2003a; Tyukin et al., 2004). While a so-
lution to this problem was shown to exist for a
wide range of functions α(x, t) and ψ(x), it is not

always possible to guarantee that F(x,θ, θ̂)α(x, t)
is positive semi-definite for arbitrary f(x,θ) and
θ ∈ Ωθ, x(t0) ∈ R

n. As a result Lyapunov stability
of the system becomes problematic, if not impos-
sible, for general nonlinear parameterizations.

These observations suggest that, both in conven-
tional (5), (7) and nonconventional problem set-
tings (8), (11), ensuring Lyapunov stability for an

1 In particular, these functions can be calculated as follows

F(x,θ, θ̂) =
∫ 1

0

∂f(x,λθ+(1−λ)θ̂)

∂λθ+(1−λ)θ̂
dλ, φψ =

∫ 1

0

∂ϕ(λψ)
∂λψ

dλ,

Aψ(ψ,x, θ̂, t) =
∫ 1

0

∂A(λψ,x,θ̂,t)
∂λψ

dλ
2 Similar idea was proposed in (Ortega et al., 2002) as
adaptive “root-searching” strategy

adaptive system in case of nonlinear parametriza-
tion leads to either domination of the nonlinearity
or to additional restrictions on the class of non-
linear parameterizations. In the other words, the
problem of Lyapunov stable and non-dominating
adaptive control is ill-posed in general. As a can-
didate for replacement of Lyapunov stability one
could think of set attractivity (Milnor, 1985) of
target set (2). This concept allows to design sys-
tems which, while being unstable in Lyapunov
sense, have bounded solutions and also are capa-
ble of reaching a goal asymptotically. The main
problem with this concept, however, is that there
is a number of conditions to check which critically
depend on precise knowledge of the vector fields
of the adaptive system. This knowledge includes
the properties of yet unknown function θ̂(x, t, δ).
Therefore the least demanding concept of the con-
trol goals appears to be the notion of ω-limit set

Definition 2. A point p ∈ R
n is called an ω-limit

point ω(x(t,x0, t0)) of x0 ∈ R
n if there exists

sequence {ti}, ti → ∞, such that x(t,x0, t0) → p.
The set of all limit points ω(x(t,x0, t0)) is the ω-
limit set of x0.

Let, therefore, the control goal be to ensure that
for some positive ε the set

Ωψ(ε) = {x ∈ R
n|x : |ψ(x)| ≤ ε} (12)

contains the ω-limit set of Ωx for non-autonomous
system (1), (4) with υ(t) ≡ 0. Hence, the main
question of our current study is the following:
is there a non-dominating adaptive scheme for a
reasonably large class of parameterizations of the
uncertainty, such that all Ωψ(ε) contain the ω-
limit set of the adaptive system for any arbitrary
small ε > 0, all trajectories of the system are
bounded, and the volume of the domain of the
uncertainty is decreasing with time?

3. MAIN RESULTS

Let us consider the case where function f(·, ·) is
parameterized by scalar θ ∈ Ωθ = [θ, θ] ⊂ R,
θ < θ. For each θ ∈ Ωθ and nonnegative ∆ ∈ R≥0

we introduce the following equivalence relation

θ ∼ θ′ ⇔ |f(x, θ) − f(x, θ′)| ≤ ∆ ∀ x ∈ R
n

and corresponding equivalence classes [θ]∆ =
{θ′ ∈ Ωθ|θ ∼ θ′}. For the given functions ϕ(ψ)
and α(t) : R+ → R, α(t) ∈ C1 let us define the
following function

Sδ(ϕ(ψ), α(t)) =

{

1, |ϕ(ψ) + α(t)| > δ

0, |ϕ(ψ) + α(t)| ≤ δ

With the function Sδ(ϕ(ψ(x(t))), α(t)) we asso-
ciate the time sequence T = t0 ≤ t0 < t1 < t1 <

· · · < ti < ti < ti+1 < ti+1 < . . . , where



t0 = t0

ti = inf
t≥t

i

{t : |ϕ(ψ(x(t))) + α(t)| < δ}

ti = inf
t≥ti−1

{t : |ϕ(ψ(x(t))) + α(t)| > δ}

(13)

The elements of this sequence are time instances ti
(or ti) at which the sum ϕ(ψ(x(t))) + α(t) leaves
(or enters) domain |ϕ(ψ(x(t))) + α(t)| ≤ δ. We
define that t0 = t0 if |ϕ(ψ(x(t0))) + α(t0)| < δ.
Let us, in addition, introduce function λ with the
following properties:

λ : R → [θ, θ], λ ∈ C1, Im(λ) ⊃ [θ, θ]

∀ s ∈ R, θ ∈ Ωθ ∃ T, τ(s) > 0 :

θ = λ(s+ τ(s)), 0 < τ(s) < T

(14)

An example of such a function λ(s) = θ +

θ 1

2
(sin(s) + 1). As a candidate for θ̂(x, t, δ) we

choose the following adaptation algorithm:

θ̂(x, t, δ) = λ(θ̂0(x, t, δ))

θ̂0(x, t, δ) = γ
(

θ̂P (x, t) + θI(t) + Cθ(t)
)

θ̂P (x, t) = ψ(x)

(

α(t) +
1

2
ψ(x)

)

˙̂
θI = Sδ(ϕ(ψ), α(t))(ψ(x)ϕ(ψ)−

ψ(x)(ξ2 + b1ψ(x)))

α(t) = (1, 0)(ξ1, ξ2)
T r

(

ξ̇1
ξ̇2

)

=

(

0 1
a1 a2

)(

ξ1
ξ2

)

+

(

b1
b2

)

ψ

b1 6= 0, a1, a2 < 0,

Cθ(t) =























1

γ
θ̂(ti−1) − θ̂I(ti−1)−

θ̂P (t), t ∈ (ti−1, ti)

Cθ(ti−1) + θ̂P (ti−1)−

θ̂P (ti), t ∈ [ti, ti]

(15)

Properties of algorithm (15) are summarized in
the following theorem:

Theorem 3. Let system (1) with control function
(4) and corresponding error model (5) be given.
Let function υ(t), υ̇(t) ∈ L∞ and ‖υ(t)‖∞ ≤ ∆.
Let in addition function f(x,θ) be bounded. Then
1) for any ε > 0 and ϕ ∈ Cϕ(k), k > 0 there exist
functions δ0 : R+ → R+, δ0 ∈ C0, δ(0) = 0,

δ(ε,∆) = δ0(ε) + ∆, and function θ̂(x, t, δ), given
by (15) with arbitrary γ ∈ R, γ > 0 and initial
conditions such that Ωψ(ε + ∆

k
) contains the ω-

limit set of system (1);
2) all trajectories of the system are bounded and
solutions x(t,x0, t0) converge into the domain
Ωψ(ε+ ∆

k
) in finite time;

3) if for any θ ∈ Ωθ there exist constants T1 > 0,
M > 2δ0(ε) + ∆ > 0 and function τ(t) : R →
(0, T1) such that

|f(x(t+ τ(t)), θ) − f(x(t+ τ(t)), θ̂)| > M

∀ θ̂ ∈ Ωθ \ Uǫ([θ])
(16)

then θ̂ converges into Uǫ([θ]) in finite time.

Theorem 3 3 states that for arbitrary C1-smooth
and bounded function f(x, θ) there exists a non-
dominating adaptation algorithm in class Cϕ(k)
(to see to let ∆ = 0). In presence of unknown
perturbation υ(t) we guarantee convergence of
the trajectories x(t,x0, t0) to an arbitrary small
neighborhood of Ωψ(∆

k
), subject to the choice of

δ0 > 0. Algorithm (15) ensures boundedness of the
solutions in the extended system and furthermore,
under assumption (16), it guarantees convergence

of the estimates θ̂ to arbitrary small neighborhood
Uǫ([θ]∆) of the equivalence class (set) [θ]∆. In case
[θ]∆ = {θ} it guarantees convergence to the small
neighborhood of the actual value of θ.

Condition (16), which we require for convergence

of the parameter θ̂ into Uǫ, can be regarded as
a new version of nonlinear persistent excitation
(Cao et al., 2003). Our condition, however, is
more easy to verify. In addition, this condition is
consistent with linear persistent excitation condi-
tion (Narendra and Annaswamy, 1989): ∃ T >

0, ρ > 0 :
∫ t+T

t
x(τ)x(τ)T dτ > ρIn. Indeed

∫ t+T

t
x(τ)x(τ)T dτ > ρIn ⇒ ∀θ 6= θ′ (θ − θ′)T×

∫ t+T

t
x(τ)x(τ)T dτ(θ − θ′) > ρ‖θ − θ′‖2 ⇒ |(θ −

θ′)Tx(t1)| >
ρ
T
‖θ − θ′‖, t1 ∈ [t, t + T ] ⇒ |(θ −

θ′)Tx(t1)| > M, ∀θ ∈ Ωθ\Uǫ, M = ρǫ
T

.

Let us generalize the statements of Theorem 3 to
the case where θ ∈ Ωθ ⊂ R

d. To this purpose we
introduce the following assumption:

Assumption 1. Let Ωθ be bounded and there exist
C1-smooth function η : [θ, θ] → R

d such that
that for any θ ∈ Ωθ there exists λ∗(θ) ∈ [θ, θ]:
|f(x,θ) − f(x,η(λ∗)| ≤ ∆, ∀ x ∈ R

n

Applicability of algorithms (15) to multi-dimen-
sional θ then follows explicitly from Theorem 3.

Theorem 4. Let system (1) with control function
(4) and corresponding error model (5) be given,
function f(x,θ) be bounded, and Assumption 1
hold. Then statements 1) – 3) of Theorem 3 follow.

Adaptation algorithm (15) can be considered as
a nonlinear dynamical system which, however, is
not internally globally stable in the Lyapunov
sense. Nonetheless its internal state is bounded
and, furthermore, it ensures reaching of the con-
trol goal for arbitrary initial conditions x(t0),

θ̂I(t0), ξ(t0). The properties of this algorithm es-
sentially rely on two ideas: monotonic evolution of
θ̂0(t), and multiple equilibria in the system 4 .

3 Proof of the theorems are available on-line in (Tyukin
and van Leeuwen, 2004).
4 See the proofs in (Tyukin and van Leeuwen, 2004) for
details
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Fig. 1. Adaptation with multiple equivalent equi-
libriums (plot a) vs. adaptation with single
asymptotically stable equilibrium (plot b)

Multiple equilibria are guaranteed by function
λ(·) defined by (14) and invariance of θ̂0(t) on the

following set {x, θ̂0| x, θ̂0 : f(x, θ)−f(x, λ(θ̂0)) =

0}. Monotonicity of θ̂0(t) in time and multiple

equilibriums ensure existence of limt→∞ θ̂0(t) =

θ̂0,∞ for any initial conditions x(t0), θ̂I(t0), ξ(t0).
This fact is used to show convergence of the
trajectories x(t,x0, t0) to the set specified by
(12). Notice also that existence of these multiple
equilibriums in case of persistent excitation for
υ(t) ≡ 0 ensure that the set Uǫ([θ]) becomes

globally attractive w.r.t. function θ̂(t,x, δ).

The difference between our method and conven-
tional Lyapunov-based design is illustrated with
Fig. 1. In Fig. 1 the upper plot depicts the solution
curve θ̂0(t, θ̂0(t0), t0) of (15), were the arrows point
towards increase of the independent variable along
the curve. For the given value of θ and initial
condition θ̂0(t0) function λ(θ̂0) generates infinitely

many equilibria θ̂0,i, i ∈ N. If perturbation is ap-
plied to the system the state will eventually escape
its current equilibrium (for instance, θ̂0 = θ̂0,1)

and move along the axis θ̂0. Due to the monotonic-
ity of θ̂0(t, θ̂0(t0), t) with respect to t it eventually

reaches a neighborhood of the point θ̂0 = θ̂0,2
and stops there if the perturbation is released. In
order to prevent unbounded growth of θ̂0 under
persistent perturbations it may be necessary to
change the sign of γ in (15) upon solution θ̂0(t)
reaches certain bounds.

In the lower plot we show a hypothetical solution
curves of the Lyapunov (asymptotically) stable
estimator. The problem, however, is that it is not
always possible to ensure such behavior without
knowing the value of θ or using domination in the
control.

Fig. 2. Trajectory η(λ) (the bottom panel) as
projection of the smooth curve. Gray circles
form the gird in the parameters space which
induces the curves satisfying Assumption 1.

Algorithms (15) can, in principle, take into ac-
count information (available a-priori) about the
distribution of the unknown quasi-stationary θ as
a function of time. This information is accounted
for by the choice of functions η(·) and λ(·). In Fig.
2, for example, the curve η(λ) is designed to visit
the neighborhood of the center more frequently
(16 times per period) than other points (only 2
times per period) of the domain. Even though
the problem of choosing these curves η(λ) (which
fit given distributions of θ) is not trivial, such
optimal choice, if successful, can provide room
for further enhancements of performance in the
system. The next step would be to adjust or tune
functions η(λ) adaptively, enabling self-tuning of
the adaptive algorithm. These topics, however, are
beyond the goals of our current study.

4. CONCLUSION

We proposed a new technique for adaptive control
of nonlinear dynamical systems with nonlinear
parametrization. In contrast to conventional con-
cept of Lyapunov stable adaptive control, and as
a result domination of the nonlinearity by high-
gain feedbacks, we use adaptation schemes which
are not stable in Lyapunov sense. Yet, these al-
gorithms guarantee reaching of arbitrary small
neighborhood of the desired target set. Moreover
the resulting control function is non-dominating.
Last but not least is that the method can be used
to identify nonlinear systems of rather general



class without requesting for linearization of the
nonlinearities 5 .

Robustness of the system to unmodeled dynamics
with known L∞ norm can be easily ensured by en-
larging the value of δ in our algorithms. Whether
or not robust behavior can be achieved by choice
of another parameters like functions η(·) or λ(·)
will be the topics of our future study.
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