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Abstract: In this paper, the exponential stabilization of chained form system with
inertia is addressed. A discontinuous static time invariant control law is proposed
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1. INTRODUCTION

The stabilization of nonholonomic systems and
in particular chained form systems have focused
a lot of attention these last years (see e.g. the
survey papers by Kolmanovky and McClamroch
(1995); Canudas de Witt et al. (1996)). This
interest is motivated by two main reasons. The
first one is that many mechanical systems can
be transformed into chained form which therefore
makes up an important class of generic mechanical
systems (Murray and Sastry, 1993; Kolmanovky
and McClamroch, 1995). The second reason is
that, due to the lack of linearizing feedback trans-
formation (Isidori, 1995) and of continuous static
stabilizing feedback (Brockett, 1983), these sys-
tems are very interesting benchmarks for the de-
velopment of new control approaches. These works
were initially limited to first-order chained sys-
tems which infer non-integrable kinematic con-
straints. Among the techniques developed, one
can mention time varying feedback initiated by
Coron (1992) and largely explored (Teel et al.,
1995; Samson, 1995; Lin, 1996; Morin and Sam-

son, 1997). This approach requires non-smooth
periodic (Sørdalen and Egeland, 1995; M’Closkey
and Murray, 1997; Godhavn and Egeland, 1997)
or aperiodic feedback (Yu and Shihua, 2000) to
ensure exponential stability. Time invariant dis-
continuous feedback can also be used to obtain dif-
ferent kinds of convergence/stabilization with bet-
ter performances than time-varying approaches.
Almost exponential stability, that is exponential
stability for any initial condition in an open dense
subset of Rn, was obtained by many contributors
(Astolfi, 1996; Canudas de Witt and Khennouf,
1995; Reyhanoglu et al., 1998; Jiang, 2000). The
two main drawbacks of this approach underlined,
among others, by Luo and Tsiotras (2000), is first
that there are forbidden initial conditions and
that the control is most of the time not bounded
in a neighborhood of the origin. An improvement
has been brought in (Jiang, 2000) who proposed
a way to first escape the forbidden initial condi-
tions ensuring an exponential convergence to the
origin for any initial condition. Finally, a recent
work showed that exponential stability could be
achieved by means of a discontinuous static feed-



back that remains bounded in a neighborhood of
the origin (Marchand and Alamir, 2003). Let us
also mention hybrid approaches that enable ro-
bustness results, (Morin and Samson, 2000; Prieur
and Astolfi, 2003, see) and the references therein.
In all the works cited, the system considered is the
kinematic model given by:

ẋ0 = u0 ẋ1 = u0x2

...
ẋn−1 = u0xn

ẋn = u1

(1)

Beside these works, few works deal with the dy-
namical model, that is the derivation of a general
dynamical model describing the dynamical rela-
tions between the configuration coordinates and
the torques developed by the embarked motors.
Nevertheless, many mechanical systems operating
for instance at high speeds or in water do not
perform well if we neglect dynamics. A complete
analysis and classification of these systems can be
found in (Campion et al., 1996), where it is stated
that the dynamical model can be obtained from
(1) simply by adding

u̇0 = v0

u̇1 = v1
(2)

where v := (v0, v1)T becomes the new control. The
augmented system also fails to be stabilizable by a
static time invariant continuous feedback. To date
a limited amount of work has been done in the
area of dynamical nonholonomic systems (Bloch
and Crouch, 1995; Bloch et al., 1992; Morgansen,
1999; Aguiar and Pascoal, 2000). Another inter-
esting contribution, more in the spirit of this pa-
per, is due to Laiou and Astolfi (1999) extending
(Astolfi, 1996) for a larger class of nonholonomic
systems including (1-2). The proposed static time
invariant discontinuous feedback ensure exponen-
tial almost stability. However, it seems that no
static time invariant control laws that ensure Lya-
punov stability has been proposed for this class
of common systems. The aim of this paper is to
fill this gap with the unicycle as example. The
problem is known to be non trivial since, as men-
tioned by Dixon et al. (2000), extending the feed-
back law to incorporate the dynamic model via
the standard backstepping procedure is unclear
since the feedback is not differentiable. Indeed, if
results on nonsmooth backstepping recently ap-
peared (Tanner and Kyriakopoulos, 2003), a lip-
schitz Lyapunov function for the system without
the integrator stage is then required, which, to our
knowledge, has never been exhibited for chained
form system with more than three state variable.
Notations: Let Ik×k be the identity matrix of
dimension k × k and 0k×l be the null matrix of
dimension k × l, let zi denote the ith coordinate
of the vector z.

2. PRELIMINARY DEFINITIONS

For all k > 2, let Ak and Bk be defined by:

Ak =
(

0k−1×1 Ik−1×k−1

0 01×k−1

)
, Bk =

(
0k−1×1

1

)
Defining:

y := (x0, u0)T ∈ R2×1

z := (x1, x2, . . . , xn, u1)T ∈ Rn+1×1

system (1-2) becomes:

ẏ = A2y + B2v0

ż =
(

y2An Bn

01×n 0

)
z + Bn+1v1

(3)

The control law is based on a partition of the
state space in regions. In each regions the feed-
back takes different form and is issued from two
approaches (see the proof for detail). The first one
is based on backstepping: let P be the symmetric
positive definite solution of the Riccati equation:

PAn + AT
nP − 2PBnBT

n P = −P (4)

and Q be the symmetric positive definite matrix
given by:

Q =
(

P 0n×1

01×n 0

)
+

1
2

(
PBny2

1

) (
y2B

T
n P 1

)
(5)

Note that Q depends upon the state y2 but
remains positive for all y2. Finally, let the vector
K = (k1, . . . , kn, kn+1) be defined by:

(k1 . . . kn) = (v0+y2+
y2
2

2
+ 2)BT

n P +y2
2BT

n PAn

kn+1 = y2B
T
n PBn +

1
2
y2 + 1 (6)

Note that the feedback adaptative gain K de-
pends upon y2 and the control v0. The second
approach used is issued from linear optimal con-
trol. The change of variables ξ = Tz with T =
diag(1, y2, y

2
2 , . . . , yn−2

2 , yn−1
2 , yn−1

2 ) results in:

ξ̇ =
(

An+1 +
ẏ2

y2
L

)
ξ + Bn+1y

n−1
2 v1 (7)

where L = diag(0, 1, 2, . . . , n − 2, n − 1, n − 1).
Hence, if R is some symmetric positive definite
matrix such that for all ε ∈ [0, 3

2α ] with α > 0:

R(An+1 − εL)+(An+1 − εL)T R

− 2RBn+1B
T
n+1R ≤ −R

(8)

then for all y2 such that ẏ2
y2

∈ [− 3
2α , 0], the feed-

back −y1−n
2 BT

n+1RTz will ensure an exponential
decrease of ξT Rξ.

3. MAIN RESULT

The first step of any control law for chained form
systems (even when neglecting the inertia) is to



bring the system away from the manifold y2 = 0
where there is a lack of controllability. Almost
stabilizing controller dodge this problem by pro-
hibiting these initial conditions (Laiou and As-
tolfi, 1999; Reyhanoglu, 1996, 1997). One solution
could consist in applying a constant control during
a constant time or as long as some norm of y is
lower than a fixed level but such approaches are
doomed to fail in obtaining exponential stability.
Indeed, this would systematically force y to go far
from the origin which is unacceptable as regards
Lyapunov stability. Another approach could be to
introduce the time or the initial condition in the
controller but, because of its simplicity and its
efficiency, the approach adopted here is to find a
purely static time-invariant feedback.

Let Rn+3 be divided into the four regions:

Ω0 =0Rn+3

Ω1 =
{

(y, z) ∈ Rn+3, y 6= 0, s.t.

y2
1 −

1
2y2

1

1 + y2
1

≤ −αy1y2 ≤ y2
1 +

1
2y2

1

1 + y2
1

}
Ω2 =

{
(y, z) ∈ Rn+3, (y, z) /∈ {Ω0 ∪ Ω1} , s.t.

(y2
2 + 2 |y1|)e−y1 ≥ zT Qz

}
Ω3 =Rn+3\ {Ω0 ∪ Ω1 ∪ Ω2}

where α > 3(n − 1) is some strictly positive
real number. The control law will be such that
if y starts in Ω3, it reaches Ω2 and then Ω1

in finite time and finally converge to the origin.
During that time, z will also converge to the origin
implying that Ω2 and Ω3 will vary. Let the control
law be defined by:

(y, z) ∈ Ω0 :
{

v0 = 0
v1 = 0

(y, z) ∈ Ω1 :

{
v0 = y2

2
y1

v1 = −y1−n
2 BT

n+1RTz

(y, z) ∈ Ω2 :
{

v0 = − sign(y1)
v1 = −K(y2, v0)z

(y, z) ∈ Ω3 :
{

v0 = 1
v1 = −K(y2, v0)z

(9)

With the above notations, our result is the follow-
ing:

Theorem 1. The static discontinuous feedback (9)
is such that for any in initial condition, the so-
lution of the closed loop system exists and is
unique. Furthermore, the origin is exponentially
asymptotically stable.

This result lead to some remarks. First, let us be
more specific about the notion of solution consid-
ered here. Indeed, various definitions have been
proposed for ordinary differential equations with
discontinuous right hand side. Here, we implicitly

consider Carathéodory solutions 1 . Note that the
proposed control law fail to stabilize Filippov solu-
tions (see Filippov, 1988, for an exact definition).
Indeed, in that context of solution, the Brockett’s
condition still holds 2 (Ryan, 1994). This result
was corroborated by Coron and Rosier (1994)
who established that if a driftless system admits
a discontinuous feedback law that asymptotically
stabilizes the solutions in the Filippov sense, then
the system is continuously asymptotically stabiliz-
able. Stabilization in the Filippov sense is hence
doomed to fail. This is not surprising since Filip-
pov solutions are known to be too numerous in
particular for the stabilization problem of non-
linear systems (see Ceragioli, 2002; Clarke et al.,
1997). Note that the proposed feedback is not the
first discontinuous control that stabilizes (even
exponentially) Carathéodory solutions 3 without
stabilizing the Filippov solutions of a system. This
is in particular the case for the feedback proposed
by Bloch and Drakunov (1996) for the nonholo-
nomic integrator or by Canudas de Witt and
Sørdalen (1992) for the unicycle (see Ceragioli,
2002, for a detailed study) or for the more gen-
eral feedback proposed in (Marchand and Alamir,
2003) for chained systems. Note that the control
(9) can be proved to be bounded for bounded
states and exponentially decaying to zero, but this
will not be done here.

PROOF. First note that figure 1 illustrates the
following proof by showing the typical behavior in
the y-plane.

• Let us start with some initial condition in Ω3 at
initial time t = t3 = 0 and prove that the states
must join Ω2 (if it does not join Ω1 before) in finite
time. In Ω3, one has:{

y1(t) = y1(0) + y2(0)t +
1
2
t2

y2(t) = y2(0) + t
(10)

Therefore, y2
2 +2 |y1| is increasing after some finite

time. For the z part of (3), v1 can be designed
using backstepping. If one considers the system:

χ̇ = y2Anχ + Bnuχ

with control uχ = −y2B
T
n Pχ, then the Lyapunov

function Vχ = χT Pχ is such that V̇χ = −y2Vχ

resulting in:

Vχ(t) = Vχ(0)ey1(0)−y1(t)

1 A function φ(t) : I → Rn is a Carathéodory solution
if it is differentiable and satisfies ẋ = f(x, k(x)) almost

everywhere on I
2 At least for affine-input systems, for general systems,
the result holds if one further has A ⊆ Rm convex ⇒
f(x, A) ⊆ Rn convex
3 that can be proved to exist in these specific cases



Posing χ = (z1, . . . , zn) and ζ = zn+1 + y2B
T
n Pχ,

the second part of (3) can be transformed into:

χ̇ =y2(An −BnBT
n P )χ + Bnζ

ζ̇ =v1 + u0B
T
n Pχ + y2B

T
n PBnζ

+ y2
2BT

n P (An −BnBT
n P )χ

Taking v′1 = v1 + u0B
T
n Pχ + y2

2BT
n P (An −

BnBT
n P )χ + y2B

T
n PBnζ directly as control and

defining the Lyapunov function V = χT Pχ +
1
2ζ2 = zT Qz, with Q as in (5), it follows:

V̇ = −y2χ
T Pχ + 2ζBT

n Pχ + ζv′1

Hence, taking v′1 = −2BT
n Pχ− (1+ 1

2y2)ζ, that is
v1 = −Kz with K as in (6), V will be such that
V̇ = −y2V − ζ2 ≤ −y2V giving:

V (t) ≤ V (0)ey1(0)−y1(t)

It follows that zT Qzey1 remains bounded by
zT (0)Qz(0)ey1(0). This means that if the system
does not join a configuration in Ω1 or the origin
before, it necessarily enter Ω2 in finite time. Note
that the solution of the closed-loop system is well
defined and unique.

• Consider now some starting point in Ω2 at time
t = t2 and prove that the state joins Ω1 after some
finite time and can not (re)join Ω3. In Ω2, y turns
round {y = 0} following a trajectory such that:

d(y2
2 + 2 |y1|)

dt
= −2 sign(y1)y2 + 2 sign(y1)ẏ1 = 0

Note that this also insure that the relay control
action will not cause chattering. Beside this, as
previously, the evolution of V still satisfies

V (z(t2 + t)) ≤ V (z(t2))ey1(t2)−y1(t)

Therefore, if y2
2(t2) + 2 |y1(t2)| ≥ V (z(t2))ey1(t2),

then for all t ≥ t2:

y2
2(t2 + t) + 2 |y1(t2 + t)| ≥ V (z(t2 + t))ey1(t2+t)

The solution of the closed loop being clearly well
defined for any initial solution in Ω2, the system
thus remains in Ω2 and can not (re)join Ω3.
Finally, with a simple geometrical interpretation
of Ω1, one can see that the projection of Ω1

on the y-plane corresponds to the sectors held
between the functions y2 = 1

α (−y1 − 1
2

y1
1+y2

1
) and

y2 = 1
α (−y1+ 1

2
y1

1+y2
1
) (without the origin). Hence,

y being turning round the origin of this plane, the
system necessarily joins Ω1 in finite time.

• Finally, in Ω1, one has v0 = y2
2

y1
that gives,

using a relation between an open-loop trajectory
property and the closed-loop stability underlined
in (Marchand and Alamir, 1998):{

y1(t1 + t) = y1(t1)e
y2(t1)
y1(t1) (t−t1)

y2(t1 + t) = y2(t1)e
y2(t1)
y1(t1) (t−t1)

(11)

where t1 is the starting time in Ω1. Note that in
Ω1, y1 and y2 are of opposite sign, insuring that
y is exponentially converging. Furthermore, y1(t)

y2(t)

remains constant meaning that in the y-plane, y
goes straight line to the origin. Ω1 ∪ 0Rn+2 being
convex, this implies that the only possibility for
(y, z) to leave Ω1 is to join the origin 0Rn+2 . Beside
this, by (11) and the definition of Ω1, it follows
that ẏ2

y2
∈ [− 3

2α ,− 1
2α ]. Hence, thanks to (8),

ξ = Tz is such that dξT Rξ
dt ≤ −ξT Rξ. For any

matrix M , let λM
min and λM

max denote respectively
the smallest and the largest singular values of M .
With this notation, it then follows:

‖z(t1 + t)‖λT (t1+t)
min

√
λR

min ≤

‖z(t1)‖λT (t1)
max

√
λR

maxe
− 1

2 (t−t1)
(12)

But, with (11), one obtains

λ
T (t1+t)
min ≥ min(1, |y2(t1)|n−1)e(n−1)

y2(t1)
y1(t1) (t−t1)

and hence

λT (t1)
max

λ
T (t1+t)
min

≤ max(|y2(t1)|n−1
, |y2(t1)|1−n)

× e
−(n−1)

y2(t1)
y1(t1) (t−t1)

With (11) and the definition of Ω1, one has thanks
to the choice α > 3(n− 1):

n− 1
2α

≤ −y2(t1)
y1(t1)

(n− 1) ≤ 3(n− 1)
2α

<
1
2

(13)

which ensures that z(t1 + t) is exponentially de-
creasing to the origin without leaving Ω1.

The control law avoids chattering by guaranteeing
that once the state has entered one of the regions,
it can not go back to the region from which it
came. Now to obtain the exponential stability, it
must be established that the excursions of the
states reduces as the initial condition goes closer
to the origin. This directly follows from the fact
that the time t1 needed by the system to go from
some initial condition to a state in Ω1 goes to the
origin with the initial condition. Hence, the norm
of the starting point (y(t1), z(t1)) in Ω1 also goes
to zero with the initial condition. Hence, from (11)
and (12), one can conclude that there exists some
positive definite N(y, z) and some ε such that

0 < ε ≤ min ( 3
2α , 1

2 −
3(n−1)

2α )

so that the following inequality holds:

‖(y(t), z(t))‖ ≤ N(y(0), z(0))e−εt

4. THE UNICYCLE

The unicycle, also known as the Brockett non-
holonomic integrator or the Heisenberg system
(Brockett, 1981, 1983) is probably the most stud-



ied chained form system. It encompasses many
wheeled and water robots and is given by:

ẋ = ν1 cos θ

ẏ = ν1 sin θ

θ̇ = ν2

mν̇1 = τ1

Iν̇2 = τ2

where m is the mass of the unicycle, I the inertia
around the vertical axis at contact point, ν1 is
the driving force and ν2 the steering torque. This
system with drift clearly fails to be convertible
into chained but can be transformed into (3) by
taking:

v0 = τ2
I v1 = τ1

m − τ2
I z1 − ν2

1z2

y1 = θ z1 = x sin θ − y cos θ
y2 = ν2 z2 = x cos θ + y sin θ

z3 = ν1 − ν2z1

For illustration purpose, the system parameters
have been set to m = I = 1 and α = 3(n − 1) +
1 = 7. We consider the manoeuvre starting at
(x(0), y(0), θ(0), ν1(0), ν2(0)) = (1,−1, 3π

2 , 0, 0).
The resulting paths are shown on Figures 2. Note
that the approach in (Laiou and Astolfi, 1999)
forbids initial conditions on the line y2 = −ςy1

where ς is some positive controller parameter.
This impossibility does not exists in the proposed
approach.

5. CONCLUSION

In this paper, a discontinuous control law that
exponentially stabilizes dynamical chained sys-
tems was proposed. The control law is based on
a subdivision of the state space into four subsets.
Simulations on the unicycle with inertia are given.
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Fig. 1. The unicycle: trajectory in the y plane of
the unicycle. The circle corresponds to the
initial condition in Ω3 and the two next boxes
on the trajectory shows the discontinuities
arising when the system enters Ω2 and Ω1.
The dotted lines shows the frontier of Ω1.
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