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1. INTRODUCTION

Passivity based control (PBC) tries to exploit
intrinsic characteristics of a system that con-
tribute to its stability. The control law is derived
based upon an energy storage function that has a
minimum at a desired point. A recent extension
to PBC is the technique of interconnection and
damping assignment (IDA), that aims to increase
system damping and redefine, if necessary, system
interconnection in order to induce system trajec-
tories to a desired stable equilibrium (Ortega et
al., 1998).

To apply PBC-IDA it is convenient to pose system
dynamics as port controlled Hamiltonian (PCH)
equations, because they allow a clean identifica-
tion of interconnection and damping elements of
the system and of its passive nature, if present.
The design of the PBC-IDA control law for a PCH
system follows then a systematic procedure.

In this paper PBC-IDA design methodology is ap-
plied to control the motion of a seismically excited
building. The actuator in this case is a magneto-
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rheological damper placed between ground and
first story. There are several advantages on choos-
ing this semi-active actuator, as it is robust under
environment changes and because its energy con-
sumption is small (Symans, M. R. and Constanti-
nou, A. C., 1997).

The paper recovers basic equations from PBC-
IDA and states the conditions that the control
law must satisfy in order for the feedback system
to have a prescribed behavior. Conditions are
then proven for the case of the control law here
proposed. Simulation results are provided where
the performance of the controller is compared with
the free response case. Concluding remarks are
also included.

2. PASSIVITY BASED CONTROL OF PORT
CONTROLLED HAMILTONIAN SYSTEMS

Using Euler-Lagrange equations and Legendre
transformation H = pq̇ − L, where q are the gen-
eralized coordinates, p the generalized momenta,
L the Lagrangian and H the Hamiltonian, it is
possible to write the port controlled Hamiltonian
equations (PCH) as (Blankenstein, G. and van der
Schaft, A. J., 2001)



ṡ =[J(s) − R(s)]
∂H

∂s
(s) + g(s)u , (1)

y =gT (s)
∂H

∂s
(s) ,

where s = [qT pT ]T ε R2n represents energy
variables, J(s) = −JT (s) the interconnection
matrix, R(s) = RT (s) ≥ 0 the damping matrix,
H(s) : Rn → R, H(s) ≥ 0 the energy storage
function and u, y εRm the port power variables.
The energy balance of the PCH system guarantees
that PCH in Eq. (1) is passive.

The first step to design a PBC control law is to
propose the closed loop desired dynamics with
PCH structure, that is

ṡ = [Jd(s) − Rd(s)]
∂Hd

∂s
(s) . (2)

Terms in Eq. (2) must satisfy Jd(s) = −JT
d (s),

Rd(s) = RT
d (s) ≥ 0 and Hd ≥ 0 with minimum

at s∗, the desired stable equilibrium for the closed
loop system. It is always possible to write Jd(s) =
J(s) + Ja(s), Rd(s) = R(s) + Ra(s) and Hd(s) =
H(s) + Ha(s), where terms with subindex a are
referred to as assigned behavior.

There are several ways to propose the assigned
terms Ja(s), Ra(s) and Ha(s). In this paper the
fact that building dynamics is well known 3 is
exploited. To guarantee that the assigned terms
are appropriate (Ortega et al., 2002) propose the
left annihilator test, that consists on verifying

g⊥(s)[Jd(s) − Rd(s)]
∂Ha(s)

∂s
=

− g⊥(s)[Ja(s) − Ra(s)]
∂H(s)

∂s
, (3)

where g⊥(s) is the left annihilator of g(s), i.e.,
g⊥(s)g(s) = 0. A solution to Eq. (3) must be
obtained in terms of Ha(s). Once a solution is
found for Eq. (3), it is necessary to verify the
following proposition, taken directly from (Ortega
et al., 2002), to assure that the proposed Ja(s)
and Ra(s) will take the system to the desired
equilibrium.

Proposition 1: Given J(s), R(s), H(s), g(s) and
the desired equilibrium s∗εRn, assume that β(s)
Ja(s) Ra(s) and vector κ(s) can be found such
that

[J(s)+Ja(s)−(R(s)+Ra(s))]κ(s) =

− [Ja(s)−Ra(s)]
∂Hd

∂s
(s) , (4)

and that the following properties hold

• Structure preservation.
• Integrability.
• Equilibrium assignment.
• Lyapunov stability.

3 See, for example, (Chopra, 1995; Paz, 1997).

Under these conditions, the control law u = β(s)
yields the closed loop dynamics in Eq. (2), with
desired energy storage function given by

Hd(s) = H(s) + Ha(s) , (5)

with Ha(s) satisfying

∂Ha

∂s
(s) = κ(s). (6)

The desired equilibrium will be locally stable.
It will be asymptotically stable if the largest
invariant set under the closed loop dynamics is
equal to s∗, i.e.,

s∗ =

{
sεRn|

[
∂Hd

∂s

]T

Rd
∂Hd

∂s
(s) = 0

}
. (7)

An estimate of the domain of attraction is given
by {sεRn|Hd(s) ≤ c}. �
Once the left annihilator test and Proposition 1
are verified, the PBC-IDA control law can be
stated as

u = β(s) = [gT (s)g(s)]−1gT (s) (8){
[Jd(s) − Rd(s)]

∂Hd

∂s
(s) − [J(s) − R(s)]

∂H

∂s
(s)
}

.

3. PBC-IDA CONTROL LAW FOR A
BUILDING

The PBC-IDA control law will be developed for
a prototype building subject to seismic excitation
in one direction and assuming that the control
signal will be provided by a magneto-rheological
damper. Fig. 1 illustrates the arrangement of
building, damper and ground motion.
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Fig. 1. Building with n stories.

In Fig. 1, mi is the concentrated mass of story i,
ci and ki are the damping and stiffness coefficients
of column between stories i and i−1, respectively
and ẍg is the ground acceleration induced by the
earthquake. In matrix form, the dynamics of the
building are given by (Chopra, 1995)

Mẍ + Cẋ + Kx = −Mẍg + F ,



where x, ẋ, ẍ ∈ Rn are the vectors of stories
displacements, velocities and accelerations, F =
l f = [1 0 · · · 0]T f , with f the force applied by
the magneto-rheological damper 4 , ẍg ∈ Rn is the
vector of ground accelerations applied to all the
stories 5 , M = MT > 0 is the diagonal inertia
matrix, C = CT ≥ 0 is the damping matrix and
K = KT > 0 is the stiffness matrix. C and K
are tridiagonal. In this paper it is assumed that
measurements of ẍ and ẍg are available, and that
from them x, ẋ can be derived by an observer.

The energy variables are

q = x

p = Mẋ ,

where p is the linear momentum.

The energy storage function is

H(s) =
1
2
pT M−1p +

1
2
qT Kq . (9)

Rearranging previous equations yields the PCH
equations in the form of Eq. (1)

[
q̇
ṗ

]
=

([
0 I
−I 0

]
−
[

0 0
0 C

])[
Kq

M−1p

]
(10)

+

[
0
l

]
u +

[
0
−I

]
Mẍg

y = [ 0 I ]

[
Kq

M−1p

]
,

where u = f is the system control signal. From
Eq. (10), it follows that the interconnection and
damping matrices are given by

J(s) =

[
0 I
−I 0

]
, R(s) =

[
0 0
0 C

]
. (11)

To design the PBC-IDA control law for the struc-
ture, it is proposed to keep the interconnection
term and to assign additional damping, therefore

Ja =

[
0 0
0 0

]
, Ra =

[
0 0
0 Cd − C

]
, (12)

where Cd is the desired damping matrix.
The desired energy storage function is proposed
as

Hd(q, p) =
1
2
pT M−1p +

1
2
qT Kdq , (13)

where Kd is the desired stiffness matrix, that nor-
mally adds stiffness to the system. From analyzing
Eq. (13), it is clear that the desired equilibrium
point is set to s = [qT pT ]T = [0 0]T , i.e., to
the structure with no motion.

4 In this case, the force is applied directly to the first story.
5 All elements of ẍg are equal.

Once all the terms for the IDA have been pro-
posed, the PCH closed loop equations are given
by [

q̇d

ṗd

]
=

([
0 I
−I 0

]
−
[

0 0
0 Cd

])[
Kdq

M−1p

]
.

(14)

Using Eq. (8) the control law is

f = −lT
{
(Kd − K)q − (Cd − C)M−1p + Iẍg

}
.

(15)

To assure that this control law will stabilize the
closed loop system in the desired equilibrium,
sT
∗ = [0 0]T , it is necessary to verify the left anni-

hilator, Eq. (3), and the conditions in Proposition
1. Using Eq. (10), it follows that the annihilator
equation is of form

[ g1(s)⊥ g2(s)⊥ ]

[
0

g2(s)

]
= 0 . (16)

From Eq. (16) it follows that g1(s)⊥ = � 6 and
g2(s)⊥ = 0.

Substituting the values in Eqs. (10) and (14) into
Eq. (3) yields[

g1(s)
⊥M−1p

g2(s)⊥[−Kdq − CdM−1p]

]
=

[
g1(s)

⊥M−1p

g1(s)
⊥[−Kq − CM−1p]

]
.

(17)

From the first row of Eq. (17) it follows that
g1(s)⊥ = � and from the second that there is not
a value of g2(s)⊥ different from zero that satisfies
the equality. Therefore, from Eqs. (16) and (17)
the proper values are g1(s)⊥ = � and g2(s)⊥ = 0.
Solving Eq. (5), it follows that

Ha =
1
2
qT (Kd − K)q . (18)

To obtain the value of κ(s), Eq. (6) is solved

κ(s) =
[

(Kd − K)q
0

]
. (19)

With the values of κ(s) and Ha(s), Eq. (4) is
verified using the building model to obtain[

κ2(s) +
∂H

∂p
(s)

κ1(s)

]
=

[ ∂H

∂p
(s)

(Kd − K)q

]
. (20)

For the equality in the first row to hold it is
necessary that κ2(s) = 0, and from the second row
that κ1(s) = (Kd − K)q, result that is consistent
with Eq. (19).

The expression to verify structure preservation is

Jd(s)=J(s, β(s)) + Ja(s) = −[J(s, β(s)) + Ja(s)]T

(21)
Rd(s) = R(s) + Ra(s) = [R(s) + Ra(s)] ≥ 0 .

(22)

6 � arbitrary value.



Substituting Eqs. (11) and (12) into Eq. (21) for
the desired interconnection yields

Jd =

[
0 I
−I 0

]
= −

[
0 I
−I 0

]T

, (23)

and for the desired damping

Rd =

[
0 0
0 Cd

]
=

[
0 0
0 Cd

]T

. (24)

To satisfy integrability is necessary to verify that
κ(s) is the gradient of an scalar function, therefore

∂κ

∂s
(s) =

[
∂κ

∂s
(s)

]T

. (25)

Evaluating Eq. (25) with the values of the building
model it follows that

[ ∂κ1(q, p)
∂q

∂κ1(q, p)
∂p

∂κ2(q, p)
∂q

∂κ2(q, p)
∂p

]
=

[ ∂κ1(q, p)
∂q

∂κ2(q, p)
∂q

∂κ1(q, p)
∂p

∂κ2(q, p)
∂p

]
.

(26)

From Eq. (26), it follows that elements (1, 1) and
(2, 2) of matrices in both sides are identical. The
equality of the other two elements requires that

∂κ1(q, p)
∂p

=
∂κ2(q, p)

∂q
. (27)

One possibility for Eq. (27) to hold is that κ1(s)
is only a function of q and κ2(s) a function of
p, i.e., κ1(q) and κ2(p). In this case, Eq. (27)
holds trivially. This requirement is fulfilled by the
results in Eq. (19). If s∗ is the equilibrium of the
desired energy storage function, Hd(s), κ(s) must
satisfy

κ(s∗) = −∂H

∂s
(s∗) . (28)

Substituting κ(s) from Eq. (19) and the partial
derivative of the energy function in Eq. (9) into
Eq. (28) it follows that[

(Kd − K)q
0

]
=

[
−Kq

−M−1p

]
. (29)

Evaluating Eq. (29) in the equilibrium given by
s∗ = [q p]T∗ = [0 0] yields[

0
0

]
=

[
0
0

]
(30)

Finally, stability in the sense of Lyapunov is
verified using

∂K

∂s
(s) > − ∂2H

∂s2
(s∗) . (31)

Applying Eq. (31) to the model of the building[
(Kd − K) 0

0 0

]
> −

[
K 0
0 M−1

]
. (32)

Taking determinants in Eq. (32) yields

0 > −KM−1. (33)

Condition (33) holds because K > 0 y M−1 > 0.

All the conditions stated in the left annihilator
and in Proposition 1 have been verified. With this
it is assured that the PBC-IDA control law in
Eq. (15) makes the desired equilibrium point s∗
assymptotically stable.

The control law f in Eq. (15) is used to determine
the voltage v that a magneto-rheological damper
(MRD) has to apply to the building. For this pur-
pose the model of the MRD proposed in (Jiménez-
Fabián, R. E. and Álvarez Icaza-Longoria, L.
A., 2003) is employed to obtain an explicit equa-
tion of the voltage value required in the MRD that
best matches the required control force f in by
the PCB-IDA control law. The equation for the
voltage is

v =
(f − σ2ẋ1)a0|ẋ1|

ẋ1 − a0a1f |ẋ1|ẋ1 + a0a1σ2ẋ1|ẋ1| , (34)

where ẋ1 the relative velocity at the damper
ends, in this case the first story velocity, and
a0, a1, σ0, σ1, σ2 model constants. Velocity ẋ1 is
assumed to be available, as stated before. In the
prototype under consideration v ∈ [0, 2.5][V ], the
value in Eq. (34) is truncated accordingly. It is
possible to incorporate the model of the MRD in
the PCH equations. However, in this paper the
fact that the dynamics of the MRD is much faster
than that of the building is exploited, to justify
the approximation in Eq. (34).

4. SIMULATION RESULTS

Once the system was model in PCH equations and
the PBC-IDA control law in Eq. (8) was designed,
numerical simulations were executed for different
selections of the desired energy function, Hd, and
the assigned damping, Rd. The parameters for
the model, a three stories building, are in the
appendix, together with the relevant constants of
the MRD.

The excitation for the building came from a record
of the north-south (NS) component of the earth-
quake on September 19, 1985 taken at the “Sec-
retara de Comunicaciones y Transportes” (SCT)
in Mexico City. The corresponding ground accel-
eration is shown in Fig. 2.

Figs. 3, 4 y 5 show the displacement of the build-
ing stories under the effect of the earthquake in
Fig. (2) for one typical simulation. Two curves
are included in each figure. One represents the
free response of the building and the other the
displacement when the PBC-IDA control law is
used. It can be noticed that the curves corre-
sponding to the controlled case show significant
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Fig. 2. Ground acceleration of the September 1985
earthquake at SCT-NS, Mexico City.

reductions of the displacements, reduction that is
sharper in the case of the first story. It is expected
that if the number of stories increase, the value of
the displacements will be bigger for taller stories.
It is important to note, however, that the most
important quantities to reduce are inter-story dis-
placement. The control algorithm proposed in this
paper achieves a significant reduction of these
displacements, independently of the number of
stories.
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Fig. 3. First story displacements; CBP-AIA
(x1cc): solid, free response (x1sc): dotted.

Fig. 6 shows the voltage at the MRD that corre-
sponds to the results in Figs. 3, 4 y 5. It can be
noticed that the maximum voltage is 1.49[V ], well
below the maximum range of 2.5[V ] of the MRD.

Finally, Table ?? has a summary of four significant
simulation results under the effect of the PBC-
IDA control law.
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Fig. 4. Second story displacements; CBP-AIA
(x2cc): solid, free response (x2sc): dotted.
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Fig. 5. Third story displacements; CBP-AIA
(x3cc): solid, free response (x3sc): dotted.
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Fig. 6. Voltage at the magneto-rheological
damper.

5. CONCLUSION

The methodology of passivity based control with
interconnection and damping assignment (PBC-



Table 1 Summary of results

Force Volt Displacement [cm] Red. of Characteristic
[N ] [V ] No cont. PBC-IDA xi [%] values

0.17 0.0016 99.06 −40.73 ± 136.78
620 1.49 0.26 0.0700 73.08 −40.67 ± 197.52

0.31 0.1100 64.52 −40.68 ± 299.77
0.17 0.0135 92.06 −0.08 ± 78.13

590 0.7 0.26 0.0800 69.23 −0.16 ± 110.49
0.31 0.1220 60.65 −0.12 ± 95.69
0.17 0.0130 92.35 −1.58 ± 442.78

2000 2.5 0.26 0.0800 69.23 −0.82 ± 313.64
0.31 0.1200 61.29 −1.16 ± 380.84
0.17 0.0110 93.53 −14.31 ± 139.56

600 1.17 0.26 0.0810 68.85 −12.01 ± 128.98
0.31 0.1230 60.32 −9.29 ±−115.16

IDA) was applied to control the motion of a build-
ing under seismic excitation and assuming that
the actuator is a magneto-rheological damper.
Building model was posed as port controlled
Hamiltonian equations and desired damping and
energy storage functions were proposed that al-
lowed to derived a PBC-IDA control law. All the
conditions required in (Ortega et al., 2002) to
guarantee stability of a desired equilibrium were
verified. Simulation results using this control law
in a three story building subject to the ground
acceleration of an earthquake recorded at Mexico
City were presented. Results indicated a signifi-
cant reduction on the story displacements, when
compared with the free response case. Reduction
was between 60 % and 99 % for the simula-
tions presented. Voltage requirements at the MRD
never exceeded the maximum allowable value.
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Appendix A. PARAMETERS FOR THE
SIMULATION

Parameters for the MRD are taken from (Jiménez-
Fabián, R. E. and Álvarez Icaza-Longoria, L.
A., 2003) and for the building from (Dyke, S.J.
et al., 1996)

Table A.1. MRD constants

Ct. Value

a0 0.003 [(V · s2)/(Kg · m)]
a1 −0.1444 [V −1]
σ0 1059300 [Kg/(V · s2)]
σ1 5800 [Kg/s]
σ2 2300 [Kg/s]

Inertia, damping and stiffness matrices for the
building

M=

[98.3 0 0
0 98.3 0
0 0 98.3

]
[Kg],

C=

[175 −50 0
−50 100 −50
0 −50 50

][
N · s
m

]

K = 105

[ 12 −6.84 0
−6.84 13.7 −6.84

0 −6.84 6.84

][
N

m

]

Natural frequencies of building are ω1 = 34[rad/s],
ω2 = 99[rad/s], ω3 = 149[rad/s].




