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Abstract: In this paper the optimal nonlinear receding-horizon control structure is 
presented with application to induction motors in cascade structure, which provides global 
asymptotic tracking of smooth speed and flux trajectories. The controller is based on a 
finite horizon continuous time minimization of nonlinear tracking errors. Both the rotor 
flux and load torque are estimated by Kalman filter. The robustness properties with 
respect to electrical parameter variations and load disturbance are presented. Finally 
computer simulations show the flux-speed tracking performances and the disturbance 
rejection capabilities of the proposed controller in the nominal and mismatched 
parameters case. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Induction motors are the most widespread systems in 
industrial application, but they represent a highly 
coupled and nonlinear multivariable system. In recent 
years, to increase performance of classical control, 
e.g. field oriented torque control (Novotny and Lipo, 
1996), many control strategies have been proposed to 
achieve better dynamic performance and induction 
motors have been gradually replacing the DC motors. 
Among these control strategies, typical approaches 
include input-output linearization (Bodson et al., 
1994; Chiasson, 1993). Marino et al. (1999) have 
proposed a speed/torque and flux tracking adaptive 
controller without measurements of the rotor fluxes 
or load torque while adapting to the changing rotor 
resistance. This paper examines the nonlinear 
receding-horizon control approach based on a finite 
horizon dynamic minimization of tracking errors, to 
achieve torque and rotor flux amplitude tracking 
objectives. In the application context of motion 
control (robotics, machine tool), an extension to 
speed control is realized with a cascaded structure. 
This is a slightly modified version of the Ping’s 
method (Ping, 1998). Note that this approach cannot 
be applied to induction motor since the derivative of 
the control signal will appear in the cost function.  
The advantages of the proposed control law include 

good tracking performance and good robustness 
property with respect to both load torque and 
resistances variations. It is noted that when the field 
oriented control was used, the variation in load torque 
and rotor resistance deteriorate the transient response. 
Moreover, the flux weakening operation cannot be 
done in field-oriented control since this operation will 
excite the coupling between flux and speed, causing 
undesirable speed fluctuation and perhaps instability 
(Bodson et al, 1994). However, with the proposed 
control strategy, the weakening operation has no 
effect on the speed behavior.   
The paper is organized as follows. After the 
mathematical model of the induction motor 
developed in section 2, a brief overview of the 
optimal nonlinear receding-horizon control theory is 
presented in section 3. In section 4 we extend the 
previous scheme to speed control by a cascaded 
nonlinear control structure. Significant simulation 
results are given in section 5 for the nominal and 
mismatched model of the induction motor with load 
disturbance. The paper ends up with the concluding 
remarks and suggestions in section 6. 
 

2. MATHEMATICAL MODEL  
 
An induction motor is built up around three stator 
windings and three rotor windings. Using the Park’s 
transformation, a two phases equivalent machine 



     

representation with two rotor windings and two stator 
windings is obtained. In this paper, the stator fixed α-
β frame is chosen to represent the model of the 
machine and under the assumption of equal mutual 
inductance and linear magnetic circuit, the dynamics 
of the induction motor are given by a fifth-order 
model, (Hedjar et al., 2004; Novotny and Lipo, 1996) 

ugxfx += )(&  (1) 

With: [ ]TΩφφii rβrαsβsα=x  

 [ ]Tβα ss uu=u  
Where: βα ss ii ,  : stator currents, 

 βα φφ rr ,  : rotor fluxes, 

Ω : speed, 
 βα ss uu ,  : stator voltages. 
Vector function f(x) and constant matrix g are 
defined as follows: 
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All required parameters above have the following 
meanings: 
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Where: Ls, Lr are stator and rotor inductances, 
 Lm is the mutual inductance, 
 Rs, Rr are stator and rotor resistances, 
 Tr = Lr /Rr is the rotor time constant, 
 p is the pole pair number, 
 J is the inertia of the machine, 
 f is the friction coefficient, 

TL is the load torque considered as an 
unknown disturbance. 

Considering the torque and squared rotor flux 
modulus as outputs of the a.c. drive, the following 
equations can be derived, with 1y  as the torque and 

2y  as the rotor flux norm: 
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It assumed that only stator currents (isα, isβ) and rotor 
speed (Ω) are measurable. Rotor fluxes (φrα, φrβ) and 
load torque (TL) are estimated by Kalman Filter. 

 
3. NONLINEAR RECEDING-HORIZON 

CONTROL LAW 
 
In the receding-horizon control strategy, the 
following control problem is solved at each 0>t : 
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subject to the equation (1) and 0)Tt( =+x  for T>0, 
where Q is positive definite and R positive semi-
definite. To solve a nonlinear dynamic optimization 
problem with equality constraints is highly 
computationally intensive, and in many cases it is 
impossible to be performed within a reasonable time 
limit, especially for systems with very fast dynamics 
like induction motor. Furthermore, the global 
optimization solution cannot be guaranteed in each 
optimization procedure since, in general, it is a non-
convex, constrained nonlinear optimization problem. 
 
To avoid the computational burden, we shall 
approximate the above receding- horizon control 
problem by Simpson’s rule: 
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with hT 2=  is the prediction horizon. 
 
In order to find the current control that improves 
tracking error along a fixed interval, the output 
tracking error )(τe  is used instead of the state vector 

)(τx  in the above receding control problem. The 
above performance index can be written as: 
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(4) 
Where )()()()()( TT τττττ uRueQe +=L . 
 
Thus, the problem consists in elaborating a control 
law u(x,t) that improves tracking accuracy along the 
interval [ ]Ttt +; , such that )( Tt +y  tracks 

)( Ttref +y . Note that the desired output trajectory is 
specified by a smooth function )( Ttref +y  for 

[ ]fttt ;0∈ . That is, the tracking error is defined by: 
)()()( TtTtTt ref +−+=+ yye  



     

A simple and effective way of predicting the 
influence of )(tu on )( Tt +y  is to expand it into a 

th
ir  order Taylor series expansion, in such a way to 

obtain, for each component of the vectors: 

uhLL
r

ThL
!r

T

hLThTLthTty

i
r

fg
i

r

i
r
f

i

r

ififii

i
i

i
i

!
.........

!2
)()( 2

2

+++

+++=+
   for i = 1,.,m    (5) 

Where i
k
f hL  denote the kth order Lie derivative of hi 

with respect to f(x). ri is the relative degree of the 
output yi, defined to be the nonnegative integer j such 
that the jth derivative of yi along the trajectory of 
equation (1) explicitly depends on u(t) for the first 
time. 
The expansion of the motor outputs )( Tt +y  in a rth 
(with 11 =r  and 22 =r ) order Taylor series in 
compact form is: 

   )t()()T()T,()t()Tt( y uxWΛxVyy ++=+  (6) 
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Similarly, )( Ttref +y  may be expanded in a same rth 
order Taylor series: 
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Where: 

2

1)(
ref

ref

y

y
tref =y  , 

22

1

2

),( 2

refref

ref

yTyT

yT
Tt

&&&

&

+
=d  

The tracking error at the next instant )( Tt +  is then 
predicted as function of the input u(t) by: 
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By using the predicted tracking error equation (6), at 
the time hT =  and hT 2= , the performance index 
(4) can be written in the conventional quadratic form: 
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)h,,(m Qe  are terms that are independent of U(t). 

 

The minimization of J  with respect to U(t), by 
setting 0=∂∂ UJ , yields to the optimal  control : 

),(),()( 1 hht xGxPU −−=                    (9) 
The applied control signal to nonlinear system at time 
t is given by: 
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We notice that the previous output-tracking control 
law only affects the torque (y1) and the rotor flux (y2). 
In the induction machine, the aim is to control speed 
and flux, thus an extension to speed control is 
achieved, in the next section, looking at a cascaded 
nonlinear receding-horizon control structure. 
 

4. CASCADED STRUCTURE OF THE 
NONLINEAR RHC 

 
Cascaded control (Boucher et al., 1996) is typically 
prescribed for linear systems involving time-scale 
separation assumption. That is, the inner loop is 
designed to have a faster dynamic than the outer 
loop. In this paper, the nonlinear continuous 
receding-horizon control scheme is extended to 
control speed by using the cascaded structure (fig.1). 
The mechanical equation of the motor is given by: 
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Note that the load torque 
L

T  will induce a steady 
state error in the external loop, therefore a linear 
observer is used to estimate it and it is noted LT̂ . 
The equation (11) allows controlling the speed by 
acting on the torque y1. Thus, the initial system can 
be decomposed into two sub-systems in a cascaded 
form (Figure 1). The inner loop incorporates torque-
flux model and the external loop is the velocity 
transfer function deduced from the mechanical 
equation given above. 
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Fig.1. Cascaded control configuration.  
 
The desired reference models, chosen in continuous 
time, are given by: 

- For the torque trajectory (y1): 
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- For the flux trajectory (y2): 
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- For the velocity trajectory (Ω): 
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Assuming that the torque y1 tracks the reference 
signal 1refy , the global prediction model of the 
external loop is calculated, including the torque 
closed loop, in the following manner: 
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Then from the above equations, the predicted 
tracking error of the rotor speed can be expressed by: 
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The control objective is the tracking of Ω to a desired 
reference refΩ  and the tracking of y1 and y2 to 
desired reference signals 1refy  and 2refy . The 
performance indexes for the nonlinear system are: 
- Inner loop: 
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- External loop: 
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Also in this case, the cost function (14) can be 
expressed in quadratic form: 
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From the minimization of the performance indexes 
(J1 and J2), and by taking only the control signal 
applied at time t (receding-horizon principle), we 
obtain: 
- For the external loop: 
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- For the inner loop: 
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Tracking performance: 

- For the external loop: the equation (15) with 
rv = 0, gives using the second order derivative of Ω  
the following speed tracking error dynamics: 
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- For the internal loop: we assume that W(x) has 
a full rank. Let Q = q I2, R = 0 in the controller (16), 
we obtain:  

( )),()()(),()()( 11 hthht xZeQΓQKxWu +−= −−  
Differentiating the output y1 one time and the output 
y2  twice and by using the above control equation, we 
can show that the tracking errors dynamics are: 

• For the torque: 

0)(
2
3)( 11 =+ te
h

te&                (18) 

• For the flux:  
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The above dynamics equations are linear and time 
invariant. Thus, the proposed tracking controller 
design technique leads to feedback linearization and 
we can easily verify the asymptotic stability of the 
tracking errors dynamics of the overall system. 
Moreover, if LL

t
TTLim →

∞→
ˆ  then the speed tracking 

error )(tev  converges towards the origin. 
 
Zero dynamics: The error dynamics (17), (18) and 
(19) are linear and time invariant. Thus, the relative 
degrees are respectively 1 and 2. The sum is three, 
leading to a two order unobservable dynamics. By 
using the method given in (Bodson et al., 1994; 
Hedjar et al., 2004), we can show that these two 
zeros dynamics are stable provided the decoupling 
matrix W(x) is nonsingular. Notice that the 
decoupling matrix is only singular at the start up 
( )(2)(det 22

βα ϕϕ rrrpkR +−=xW ), this singularity 
can be avoided by using a flux observer with initial 
condition 0)0(ˆ ≠φ . 
 
Flux and load torque observer: Rotor fluxes are 
difficult to measure and several papers are devoted to 
this problem. Since Kalman filter is less sensitive to 
noise and model inaccuracy. Thus, it has a good 
behavior in the presence of resistance variations. The 



     

recursive form of the Kalman filter used in this paper 
is derived from the electrical equations of the 
induction motor model (1) (Hedjar et al., 2004). 
For the load torque estimator, by using the 
mechanical equation (11) one can estimate the load 
torque by a simple Kalman-Bucy filter with the rotor 
speed as the output and the estimated mechanical 
torque 1ŷ  as the input. 
 

5. SIMULATION RESULTS 
 
Computer simulations have been performed to check 
the behaviour of the proposed controller. The plant 
under control is a 1.1 kW induction machine used in 
(Ortega et al., 2000) with the following parameters:  
 Rr = 3.6 Ω, Rs = 8 Ω, Lr = 0.47 H, 

 Ls = 0.47 H, Lm = 0.452 H, J = 0.015 kgm2, 

 p =2,                 f=0.005,            Tnom=5N, 

      Ωnom=73.3 rad/s                         Wb1.14=αβφr . 

The parameters values of the three reference models 
are chosen as follows: 
 1=fξ , 25=fω rad/s for the flux trajectory 

 1=vξ , 10=vω rad/s for the speed trajectory 

 450 =ω rad/s for the torque trajectory. 

To examine the flux and the speed tracking 
performances, it was considered that speed must 
reach the value Ω = 70 rad/s in the interval of time 
0.02-2 s; and Ω = 140 rad/s in the interval 2-4 s; and 
Ω = 60 rad/s for t > 4. The flux must reach the 
nominal value Wb1.14=nomφ  in the interval of time 
0-2s. As it is stated in (Bodson et al., 1994; Marino et 
al., 1999), the flux reference will need to be reduced 
from the nominal value as the speed reference is 
increased above the rated speed in order to keep the 
required field voltages within the limits. Thus, the 
flux is reduced to 0.5 Wb in the interval 2-4s. To test 
the disturbance rejection, a 5 Nm unknown load 
torque is applied between t = 0.8 s and t = 1.4 s, 
afterwards it is decreased to 2Nm. All initial 
conditions of the motor are set to zero except for the 
flux observer: Wb02.0)0( =rφ . 

After trials, the control parameters are chosen as: 
 Q = 104 I2, R = 10-3 I2,  h = 0.001, 

 qv = 100,  hv=0.001, re = 0.0001. 

Figure 2 shows that the behavior of the actual rotor 
flux is very close to the flux reference. It also appears 
that the rotor speed fits to the speed reference 
trajectory. The applied load torque has no effect on 
the flux and its effect on the speed is rapidly 
compensated since it is well estimated (Figure 4). 
Figure 3 depicts the variations of the admissible 
stator voltage ( βα ss uu , ) and the stator current 

si that is also admissible, within the saturations limits 
(Ortega et al., 2000). 

In the mismatched case, Figure 5 shows the 
resistances variations ( rR  and sR ), the load torque 
and the induced rotor time constant variation. The 
simulation results on Figure 6 shows that a good 
tracking performance is achieved and the above 
results demonstrate that the proposed controller has 
strong robustness properties in the presence of load 
disturbance and parameter variations. 

Consequently, the use of the proposed feedback 
nonlinear receding-horizon scheme under cascade 
structure can solve the control problem of induction 
machines in the presence of uncertainties in load 
torque and resistance parameters variations without 
rotor resistance estimation. We remind that when a 
decoupling control algorithm or field oriented control 
is used, the variation in load torque and rotor 
resistance rR  causes the loss of input-output 
decoupling property and this can deteriorate the 
transient response. This calls for adaptive version of 
the algorithm where the convergence of the estimator 
is under persistency excitation of the induction 
machine (Marino et al., 1999). Moreover, in order to 
keep the required field voltages within the limits, the 
flux reference was reduced from its nominal value as 
the speed reference was increased above the rated 
speed. Operation in this flux weakening regime will 
excite the coupling between flux and speed in 
classical field oriented control, causing undesirable 
speed fluctuation and perhaps instability (Bodson et 
al., 1994). However, with the proposed control 
strategy, the flux weakening operation has no effect 
on the speed behavior. 

 
6. CONCLUSIONS 

 
In this paper, we have shown that the approximated 
nonlinear receding-horizon controller, used in 
cascaded structure, can be successfully applied to the 
control of induction machines. Based on simulation 
results, we have demonstrated that the proposed 
control law achieves speed and flux amplitude 
tracking objectives even with disturbance, thus 
presents sufficient robustness in case of electrical 
parameter variations. These results obtained with the 
particular trajectories used in motion control are very 
attractive in this field of applications. Additional 
research should be oriented first towards a nonlinear 
sensorless control scheme to reduce anymore the 
cost, secondly to discrete time-implementation of the 
proposed nonlinear receding-horizon controller. 
Analysis of the influence of sampling rate, truncation 
errors, measurement noise and saturations are all 
worthy of further investigation. 
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Fig. 2. Rotor torque, rotor flux and speed tracking 

performance.  
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Fig. 3. Stator voltage (usα, usβ) and stator current is.  
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Fig. 4. Flux and Load torque estimated errors and 

rotor speed tracking error. 
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Fig. 5. Electrical parameter variations.  
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Fig. 6. Rotor torque, rotor flux and speed tracking 

performance in the mismatched case.  


