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Abstract: An algorithm to identify the parameters of a 3D model of a building
subjected to two orthogonal components of seismic excitation is presented. A
convenient reparameterization is proposed for a least-squares algorithm that allows
an important reduction in the order of the covariance matrix, when compared
with the standard formulation. This reduction facilitates real time implementation
of the algorithm. Simulation results for a three stories building, that confirm
analytical findings, are presented. Copyright c©2005 IFAC
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1. INTRODUCTION

Concern for buildings motion has increased along
with their increase in height. This is specially
true when external forces due to earthquakes or
wind are applied to these structures. Large dis-
placements can produce irreversible damage with
traggic consequences, as those observed in Mex-
ico City during the 1985 earthquake. There are
several techniques for building motion control: ac-
tive, semiactive and passive, developed to decrease
the magnitude of the displacements (Connor and
Klink, 1996). These techniques require the use of
specialized actuators, as it is the case of magneto-
rheological dampers (Yang, 2001),which are de-
vices where it is possible to control resistance
to motion and are normally installed between
ground and the first story of buildings (Dyke et
al., 1996; Jiménez Fabián, 2002; Álvarez Icaza
and Jiménez, 2003; Álvarez Icaza and Carrera,
2003). To obtain good performance of the control
schemes, it is convenient to have good analytical
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models of the buildings that accurately predict
their behavior.

Civil engineers design buildings in such a way
that they can withstand a design load or force
for a given mass, damping and stiffness (Bazán
and Meli, 1985; Meli, 1985). However, when the
building is constructed, in most of the cases, real
parameters are bigger that the designed ones due
to several reasons, including safety factors intro-
duced due to uncertanties. This is not a problem
from the design point of view, as the real build-
ing will stand bigger loads than the design ones.
For the control engineer, however, these design
parameters are not fully useful to design control
algorithms because their mismatch with the real
parameters can deteriorate control performance.
The question of how to measure the real building
parameters without resorting to destructive tests
is an important one. In this sense, parameter iden-
tification methods are very useful, because to use
them it is only necessary to excite the structure
and to measure its behavior. If excitation comes
from an earthquake, identification can be done in
real time and in parallel with control actions.



This paper deals with an efficient identification
scheme that allows to obtain in real-time the para-
meters for a 3D building subject to two horizontal
and orthogonal seismic excitation signals. The rest
of the paper contains several sections that deal
with the mathematical model, the identification
algorithm and simulation results of the proposed
scheme.

2. MATHEMATICAL MODEL

The 3D model of a shear building based on planar
frames has two horizontal displacement coordi-
nates and one horizontal torsion coordinate for
each story, if the model is developed under the
assumption of rigid diaphragm. The model can
be derived based on the analysis of planar frames,
whose interaction couple the different coordinates
for all the stories of the building (Bazán and
Meli, 1985; Meli, 1985; Chopra, 1995; Paz, 1997).
This analysis produces a linear dynamical model
that is able to predict the behavior of the building
subject to external forces.

The assumption of rigid diaphragm considers that
the mass of each story is concentrated and that
each story behaves as a rigid body. This implies
that beams in the story structure have infinite
stiffness. Fig. 1 shows a scheme of a one story
building with rigid diaphragm. As all points in the
story have parallel motion, it is only necessary to
consider 3 degrees of freedom (DOF) and therefore
the stiffness matrix K ∈ R3 X 3. Any node in
the diaphragm can be studied using the 3 DOF
indicated in the figure.

Fig. 1. Degrees of freedom of a rigid diaphragm
story.

For a n stories building composed by planar
frames, the stiffness matrix has a tridiagonal form
as follows

Kd =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 · · · 0
−k2 k2 + k3 −k3 · · · 0
0 −k3 k3 + k4 · · · 0
...

...
...

. . .
...

0 0 0 · · · kn

⎤
⎥⎥⎥⎥⎥⎦

> 0,

(1)

where ki represents the stiffness of column be-
tween story i and i − 1.

To quantify coupling between the stories and the
different coordinates, it is possible to write the 3D
stiffness matrix as

K =

⎡
⎣ kxx kxy kxθ

kyx kyy kyθ

kθx kθy kθθ

⎤
⎦ ∈ R3n x 3n; K = KT > 0,

(2)

where

kxx =
f∑

j=1

Kdj cos2βj ; kxx = kT
xx > 0,

kxy = kyx =
f∑

j=1

Kdj cosβj senβj ; kxy = kT
xy > 0,

kxθ = kθx =
f∑

j=1

Kdj rj cosβj ; kxθ = kT
xθ > 0,

kyy =
f∑

j=1

Kdj sen2βj ; kyy = kT
yy > 0,

kyθ = kθy =
f∑

j=1

Kdj rj senβj; kyθ = kT
yθ > 0,

kθθ =
f∑

j=1

Kdj r2
j ; kθθ = kT

θθ > 0,

with kxx, kxy, kyx, kxθ, kyy, kyθ, kθy, kθθ ∈ Rn x n,
f the number of planar frames that compose the
building, βj the orientation of planar frame j with
respect to the reference axis and Kdj the stiffnes
of planar frame j, with form as in Eq. (1).

Damping matrix C has the same form as matrix
K. Mass matrix M is given by

M =

⎡
⎣ mt 0 0

0 mt 0
0 0 Im

⎤
⎦ ∈ R3n x 3n; M = MT > 0,

(3)

where

mt =
f∑

j=i

mj , Im =
(mt

12

)
(p2 + q2),

with mj the concentrated mass of frame j and p,
q defined in Fig 1. Both mt and Im are diagonal
matrices ∈ Rn x n, therefore matrix M is also
diagonal. Using these matrices, the 3D dynamical
model of a building is given by (Paz, 1997)

M Ü + C U̇ + K U = −M Üg, (4)

where U is the vector of displacements of each
DOF, U̇ , Ü , are respectively their velocities and
accelerations and, finally, Üg is the acceleration of
the ground, applied to all the stories.

3. PARAMETER IDENTIFICATION

Given a model structure and the values of its
parameters, it is possible to obtain its response



if the input is known. In many applications these
parameters values can be obtained by direct mea-
surement, applying physical laws, material prop-
erties, etc. In other applications, this is very dif-
ficult and parameters values have to be inferred
by observing the response of the system for a
given input. When parameters are constant or
vary slowly, it is possible to use on-line para-
metric identification schemes, like the recursive
least-squares identification scheme used in this
paper (Ioannou and Sun, 1996; Åström, K.J. and
Wittenmark, B., 1995; Sastry and Bodson, 1989).
In the standard formulation for this method, the
output of the model is expressed as the product
of a regressor matrix and vector of unknown pa-
rameters. For the structure model in Eq. (4) the
corresponding expression is

Z = Υ Φ, (5)

where Z = Ü + Üg, the regressor Υ is a matrix
whose elements are obtained from combinations
of the elements of vectors U̇ y U , while the pa-
rameters vector Φ contains all the non-trivial ele-
ments of M−1K y M−1C. The dimensions of this
matrix and vector are determined by the number
of unknown parameters. If all the elements in
M−1K, M−1C ∈ R3n x 3n were non-trivial, the
total number of unknown parameters would be
18n2.

The least-squares algorithm to obtain an esti-
mated Φ̂ of the unknown vector of parameters Φ
in Eq. (5) is given by (Ioannou and Sun, 1996)

Ṗ = δ P − P
ΥT Υ
h2

P , (6)

˙̂Φ = P ΥT ε , (7)

where h2 = 1 + ‖Υ‖2
2 ∈ R satisfying Υ/h ∈ L∞,

δ > 0 ∈ R is a forgetting factor, ε = Z−Ẑ
h2 =

ΥΦ−Υ Φ̂
h2 is the output estimation error, P =

PT > 0, P (0) > 0 is the covariance matrix.

The dimension of the terms in Eq. (5), (6) and (7)
when all the parameters are considered unknown
are

Z ∈ R3n x 1, Υ ∈ R3n x 18n2
, Φ ∈ R18n2 x 1,

ε ∈ R3n x 1, P ∈ R18n2 x 18n2
. (8)

It can be noted that the order of matrix P in
Eq. (8) is related with the square of the total
number of DOF of the building. For the case
of a 3D model, there are three DOF by story.
Therefore, if the number of stories n is large, the
order of matrix P can become extremely large and
can have an impact on the computation time for
on-line identification schemes.

In this paper, another parameterization for the
dynamic model in Eq. (4) is proposed where the

output is expressed by the product of a matrix Φ
of unknown parameters and a regressor vector Υ,
i.e., the reverse parameterization of the standard
one. For this new parameterization the following
results hold.

Theorem 1. Consider the system in Eq. (4), with
K, C, M ∈ Rq x q and M a non-singular matrix
with the following parameterization

Z = Ü + Üg ∈ Rq x 1,

Φ =
[
M−1K M−1C

] ∈ Rq x 2q,

Υ =
[−U −U̇

]T ∈ R2q x 1,

where Φ is the real parameters matrix such that

Z = Φ Υ. (9)

Let Φ̂ be the estimated parameters matrix of the
system in Eq. (4) such that

Ẑ = Φ̂ Υ. (10)

then the algorithm given by

Ṗ = δ P − P
Υ ΥT

h2
P, (11)

˙̂Φ
T

= P Υ εT , (12)

with P = PT > 0 ∈ R2q x 2q, P (0) > 0, δ ≥ 0 ∈ R
a forgetting factor, h2 = 1 + ΥT Υ ∈ R satisfying
Υ/h ∈ L∞ guarantees that the output estimation
error

ε =
Z − Ẑ

h2
→ 0 as t → ∞

.

Proof: Let Φ̃ ∈ Rq x 2q be the parameter error
matrix and let Φ̃r ∈ R1 x 2q be the parameter error
vector corresponding with row r of matrix Φ̃, i.e.,

Φ̃ = Φ − Φ̂ =

⎡
⎢⎣

φ̃11 φ̃12 · · · φ̃1 2q

...
...

. . .
...

φ̃q1 φ̃q2 · · · φ̃q 2q

⎤
⎥⎦ ,

Φ̃r = Φr − Φ̂r =
[
φ̃r1 φ̃r2 · · · φ̃r 2q

]
. (13)

Let ε ∈ Rq x 1 be the output estimation error
vector and let εr ∈ R be the r element of ε
corresponding to row r in Eqs. (9) and (10), i.e.,

ε =
Z − Ẑ

h2
=

Φ Υ − Φ̂ Υ
h2

=
Φ̃ Υ
h2

,

εr =
Zr − Ẑr

h2
=

Φr Υ − Φ̂r Υ
h2

=
Φ̃r Υ
h2

. (14)

Let V be a Lyapunov candidate function

V =
1
h2

q∑
r=1

Φ̃r P−1 Φ̃T
r . (15)



The time derivative of V is

V̇ =
1
h2

q∑
r=1

˙̃Φr P−1 Φ̃T
r +

1
h2

q∑
r=1

Φ̃r P−1 ˙̃Φ
T

r

+
1
h2

q∑
r=1

Φ̃r Ṗ−1 Φ̃T
r . (16)

Analyzing row r of ˙̂Φr in Eq. (12) and substituting
this in Eq. (13) and (14).

˙̃Φ
T

r = Φ̇T
r − ˙̂Φ

T

r = 0 − P Υ εT
r = − 1

h2

(
P Υ ΥT Φ̃T

r

)
.

(17)

Using the identity

P P−1 = I ⇒ d

dt
P P−1 = Ṗ P−1+P Ṗ−1 = 0

Ṗ−1 = −P−1 Ṗ P−1.

From Eq. (11)

Ṗ−1 = −P−1

(
δP − P

ΥΥT

h2
P

)
P−1

Ṗ−1 = −δ P−1 +
ΥΥT

h2
. (18)

Susbtituting Eqs. (17) and (18) into Eq. (16)

V̇ = − 1
h2

q∑
r=1

1
h2

Φ̃rΥΥT PP−1Φ̃T
r

− 1
h2

q∑
r=1

1
h2

Φ̃rP
−1PΥ ΥT Φ̃T

r

+
1
h2

q∑
r=1

Φ̃r

(
− δ P−1 +

ΥΥT

h2

)
Φ̃T

r

= − 1
h4

q∑
r=1

Φ̃rΥΥT Φ̃T
r − 1

h4

q∑
r=1

Φ̃rΥ ΥT Φ̃T
r

− δ

h2

q∑
r=1

Φ̃r P−1Φ̃T
r +

1
h4

q∑
r=1

Φ̃rΥΥT Φ̃T
r

= − 1
h4

q∑
r=1

Φ̃rΥΥT Φ̃T
r − δ

h2

q∑
r=1

Φ̃r P−1Φ̃T
r

(19)

Using again Eqs. (14) and (15).

V̇ = −
q∑

r=1

εr εT
r − δ V (20)

V̇ = − εT ε − δ V (21)

For the case of δ > 0, it follows that V̇ < 0.
This implies asymptotic stability and therefore
V → 0 as t → ∞. When this happens, Φr → 0
and therefore εr → 0, that in turn implies ε → 0
(Khalil, 1996).

When δ = 0 Barbalat Lemma is used. From
Eq. (15) it follows that V is bounded from below

and from Eq. (21) that V̇ is negative semi-definite,
if δ = 0. Finally, as V̇ is uniformly continuous
because its time derivative is bounded, then

V̇ = − εT ε → 0 as t → ∞

V̇ → 0 implies ε → 0, that guarantees that the
estimated output Ẑ is equal to the real output.
For the case of δ = 0 persistence of excitation is
required to guarantee that θ̃ = 0. �

For the system in Eq. (4) where M−1K, M−1C ∈
R3n x 3n, the order of the terms in the parameter-
ization in Eq. (9) and in the least-squares algo-
rithm in Eqs. (11)-(12) is

Z ∈ R3n x 1, Υ ∈ R6n x 1, Φ ∈ R3n x 6n,

ε ∈ R3n x 1, P ∈ R6n x 6n (22)

It is clear that the order of matrix P en Eq. (22)
is smaller than the order of the same matrix
in Eq. (8), that is used in the standard least-
squares parameterization. This reduction is very
convenient as is related directly to the computing
time. There is another size reduction in the re-
gressor Υ that has also a positive influence from
the persistence of excitation point of view. The
smaller the size of this regressor, the easier to
satisfy persistence of excitation conditions.

4. SIMULATION RESULTS

To simulate the least-squares identification algo-
rithm in Theorem 1, a three story building model
was used. This building is formed by 4 planar
frames as shown in Fig. 2. The values for the
mass, damping and stiffness matrices were ob-
tained from a similar planar small size model
(Jiménez Fabián, 2002). The values for the ele-
ments of these matrices are shown in Table ??.

Fig. 2. Building used for simulations.

The seismic excitation signal used for the simula-
tions came from two records taken at “Secretaŕıa
de Comunicaciones y Transportes” (SCT) during



Table 1 Nominal parameters for the
model used in simulations

frame
parameters story 1 2 3 4

1 98,3 94,5 95,3 97,8
m [kg] 2 97,5 95,8 94,6 98,4

3 92,5 94,0 96,3 94,9
1 120 119 117 122

c

[
N s
m

]
2 124 123 125 127

3 125 123 128 124
1 5,16 4,84 6,01 6,04

k

[
N
m

]
(105) 2 4,48 4,99 5,87 5,23

3 5,89 5,78 5,46 5,12

an earthquake that occurred at Mexico City on
September 19th, 1985. Figs. 3 and 4 show the
records of the orthogonal horizontal accelerations.
Although the earthquake lasted for 180 seconds,
the simulation results refer only to the first 4
seconds of the earthquake, as convergence was
obtained before this time and after it there is not
significant change in the parameters value. Initial
condition for covariance matrix P and forgetting
factor are

P (0) =
[

1019 I9 09

09 1014 I9

]
; δ = 0, 01
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Fig. 3. Acceleration of the earthquake at SCT in
N00E direction.

To show the performance of the least-squares
algorithm in Eqs. (11) - (12), Fig. 5 shows the
output estimation error norm ‖ε‖2. It can be
noted in Fig. 5 that ‖ε‖2 decreases with time,
confirming asymptotic stability. Figs. 6 and 7
show two examples of parameter identification
time evolution, one of them related with stiffness
and the other with damping.

Fig. 8 shows the real and estimated accelerations,
the outputs of the system in this case, for the
three DOF of the first story. Due to the good
convergence obtained, the difference between the
two curves can not be noted.
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Fig. 4. Acceleration of the earthquake at SCT in
N00E direction.
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Fig. 6. Time evolution of identification of element
(M−1K)1,1.

The simulation results here presented did not
include the effect of noise. When noise in the level
found in accelerometers is added, estimation of
parameters and accelerations remains very good.
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Fig. 7. Time evolution of identification of element
(M−1C)1,1.
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Fig. 8. Real and estimated acceleration, 3 DOF of
the first story.

5. CONCLUSION

A least-squares algorithm for the identification
of the parameters of a 3D linear building model
was presented. The algorithm introduces a new
parameterization that allows substantial reduc-
tions in the order of the covariance matrix and
facilites fulfilling of the persistence of excitation
condition. Although the analysis was developed
for a shear building, the algorithm can be used
in other applications where a story is divided into

a finite number of nodes. Simulation results were
presented that confirm analytical findings.
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