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Abstract: In this paper, the problem of identifying a predicmodel for an unknown
system is studied. Instead of standard models returningediqiion value as output,
we consider models returning prediction intervals. Id@ation is performed according
to some optimality criteria, and, thanks to this approacle, ave able to provide,
independently of the data generation mechanism, an exatiagion of the reliability
(i.e. the probability of containing the actual true systempat value) of the prediction
intervals returned by the identified models. This is in casitito standard identification
where strong assumptions on the system generating datawaityurequiredCopyright
© 2005 IFAC
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1. INTRODUCTION without a tag certifying its accuracy.

A practical way to assign the accuracy tag is to provide
In this paper, we are interested in deriving predictor an interval (or region) of confidence around the pre-
models from data, i.e. models that can be used fordicted value to which the future output is guaranteed to
prediction purposes. Prediction is not only important belong with a certain probability. In the standard iden-
per se, but it also plays a significant role in many tification approach, this is typically done a-posteriori
application endeavors such as predictive control andby estimating the level of the noise affecting the model
signal processing. and by deriving the confidence interval from such an
Along the standard routes in system identification estimate.
(Ljung, 1999; Soderstrom and Stoica, 1989), the A crucial observation which has been pointed out
model is typically obtained by first selecting a para- many times in the literature is that the confidence (or
metric model structure, and then by estimating the probability) of the prediction interval may be difficult
model parameters using an available batch of obser-to evaluate if the system generating the observations is
vations. The so obtained identified model may then be structurally different from the parametric model. This
used to predict the future output of the system. entails that reliable results on the interval confidence
As is obvious, however, the predicted output value can be obtained only if strong hypotheses on the struc-
is always an approximation of the actual value the ture and order of the mechanism that generates the
system output will be, so that crediting the predicted data are made.
value with reliability will depend on the prediction In this paper, we follow a novel approach for the con-
accuracy the application at hand demands. In turn, thisstruction of predictor models which returns prediction
entails that a predicted value is of little use if derived intervals with guaranteed confidence under general



conditions. In contrast to the standard way of proceed-where for a giverg, M is a one-valued ma@ — Y.
ing, we consider from the beginning model structures Then, an IPM is obtained by associating to egch®
returning an interval as output (these models are calledthe set of all possible outputs given B ¢,q) asqis
interval predictor models (IPMs) and are strictly con- let vary overQ, viz.

nected to set-valued map (Aubin, 1990; Aubin and .

Cellina, 1984)). In this way, the model structure is 1(¢) =1y y=M(¢,q)forsomeqe Q}.  (2)
directly tailored to the final purpose of obtaining a pre- Remark 1.Note thaty = M(¢,q) should not be con-
diction interval. For the selection of the model within sidered as a model family from which a specific model
the chosen structure, only the interval models which has to be selected. Instead, this parametric model is
are compatible with the observed data (in a sensemerely an instrument through which an interval map
rigorously defined in Section 3) are considered, and, | (¢) is defined.

among these, the model returning the smallest possible ] ] )

prediction interval is chosen. An examp'le of a parametnc IPM is that derived from
Through this new approach, we gain a fundamen- standard linear regression functions:

tal advantage: the reliability of the estimated interval , — {y= 3Tp+e 9 cOCR", lef <yeR}. (3)

can be quantified independently of the data-generating i T T el B
mechanism. In other words, we are able to evaluate the! this caseq=[9 " €’ € R™andQ =0 x [y, }].
probability with which a future output is guaranteed to © €an be e.g. a sphere with centeand radius':
belong to the predicted interval, whatever the system O=%Ber={3cR": |9 —c| <r}, 4)
generating the data is.

or, more generally, an ellipsoidal region:
The results of the present paper build on previous n. Ta1
work of the same authors (Calafiore and Campi, O=dep={9 eR": (I —c) P(I—C) <1}, (5)
2002), (Calafioreet al, 2002) and (Calafiore and whereP is a positive definite matrix.
Campi, 2005). Our main contributions here are: i)
identification is developed in a more general frame- . .
work allowing for the presence of outliers; ii) further- termined by the ;e?lz\)/v'\;]ereq is let I\lla(rjy' For such a
more, we provide a considerably improved bound on reason, parametric s are usually denotediy

the number of samples required to attain the desired” classof parametric lPM.'S simply a'collectlon b,
reliability. whereQ belongs to a family2 of feasible sets.

For instance, for the parametric IPM defined by
The paper is structured as follows. In Section 2 inter- (3),(4), Q = %, x [—V,y] is univocally determined
val predictor models are introduced, while the identifi- by ¢, r andy and 2 can be obtained considering all
cation of these models is presented in Sections 3 and 4possible combinations of such parameters, i.e.
Section 5 addresses the fundamental problem of eval- )

uating the reliability of the identified model. Finally, 2= {Q=%Zerx[-¥,; /i c€R%reR,yeR}. (6)
some simulation examples are given in Section 6. Due Similarly, whenQ = &¢p x [—Y, y] we have

t limitati f itted.
0 space limitations, proofs are omitte 2= {Q=6px[-y.Y:CER",PES,,yER]}, (7)

2. INTERVAL PREDICTOR MODELS whereS., is the set of positive definite x n matrices.

Note that a parametric IMP as defined in (2) is de-

In this section, we introduce the key element of our 3. IPMS IDENTIFICATION

approach: models that return an interval as output (In- o )
terval Predictor Models — IPMs). Suppose now that the explicative variabfe and

Let ® C R" andY C R be given sets, called respec- the outputy are ger_1erated according to some data-
tively the instanceset and theoutcomeset. Then, an ~ 9€nerating mechanism, and that a bunch of observa-

interval predictor model is simply a rule that assigns U0NSDn = {# (1), y()}i-1...n is available. From these
to each instance vectgr € ® a corresponding output data we want to identify an IPNly among a given

interval (or region) irY. Thatis, an IPM is a set-valued ~ Class of parametric IPMg, Qe 2. o
map Identification is guided by the following two criteria.

l:p—1(p)CY. 1) On one hanq, we 'require thﬁﬁ is not falsjfied by
the observations, i.e. that it isonsistentwith data

In (1), ¢ is a regression vector containing explicative according to the following definition.

variables on which the system outputlepends, and
[(¢) is the prediction interval. For an observgd (¢) Definition 1. An IPM | is consistentvith the batch of
should contairy with high (guaranteed) probability. observation®y if y(t) € 1(¢(t)), fort =1,....N.
Throughout the paper we will consider IPMs in a para-
metric from. Precisely, consider a family of functions
mappingd intoY parameterized by a vectqrranging

in some se@ C RM

On the other hand, we waﬁt to be tight and for this
purpose we suppose that a cost criteyigyis defined,

so that, for each feasib(@, L assesses the magnitude
of the intervals returned bly,.

M ={y=M(¢,q), g€ QCRM}, For example, consider parametric IPMs defined by



(3),(4). It can be explicitly computed (Calafiogeal,,
2002) thalq(¢) = [cT ¢ —r[|p[| - v.cT¢ +r([d]|+ V],
so that, given ap, the size of the returned interval
depends om andy. Then, as a cost criterion we may
consider

Ho =y+ar, 8)
wherea is a fixed nonnegative number. If e.g.=
E[||¢(t)|]], then o measures the average amplitude
of |Q.
Similarly, for parametric IPMs defined by (3),(5) we
have that

lo(¢) = [c"d—V¢TPP —y.CT o +\/¢TPP +V],
and as a cost criterion we may consider
Ho = v+ Tr[PW], )

whereW is a weighting matrix and T# means trace.
Combining the consistency requirement with that on
tightness, the identification diy can be then per-
formed solving the following constrained optimization
problem with respect tQ.

Problem 1(IPM identification).
Findly := IQN where

Qn = argmingio s.Ly(t) € lo(9(t)), t=1,....N.

Problem 1 may look hard to solve. However, it is
worth noting that for many standard IPM parameter-
izations and cost criteria (e.g IPMs based on linear
regressive models) Problem 1 turns out to lm@avex
optimization problem which can be solved without
much computational effort.

In particular, for parametric IPMs defined by (3),(4)
and for2 and g defined in (6) and (8), respectively,
Problem 1 is equivalent to the following linear pro-
gramming problem (note thad = Q(c,r,y) in this
case):

Problem 1.a(Linear IPM - spherical parameter set).
IN = lo@ninii) where

N, TN, W = arggr;i)per ar s.t.

r,y>0
yt) > ¢ Mc—rlo®)l -y, t=1,...,N
yt) <oTMc+ro®)ll+y, t=1,...,N.

Similarly (see (Calafiorest al, 2002) for details),
for the IPMs defined by (3),(5) witt2 and g as
in (7) and (9) Problem 1 becomes a semi-definite
(convex) optimization problem which can be solved

with standard methods, see e.g. (Vandenberghe ang),

Boyd, 1996).

4. IDENTIFICATION WITH DISCARDED
CONSTRAINTS

It is well known that in many cases there are few data
(the so calledbutliers whose value is anomalous as

compared to other observations. These data are of no
use to understand the data-generating mechanism. As
is clear, in presence of outliers, requiring consistency
for all the available observations as in Problem 1 may
be unsuitable. Indeed, even a single anomalous da-
tum may adversely affect the final result, introducing
conservatism (untightness) in the identified model. In
this case, a wiser procedure would be to discard “bad
data” from available observations, before performing
the identification.

From an abstract point of view, the IPM identification
with violated constraints can be outlined as follows.
Letk, k < N, be a fixed number and le¥ be a deci-
sion algorithm through whick observations are dis-
carded fronDy. The output ofe is the sete/ (Dy) =
{i1,...,in—k} Of N—k indexes from{1,...,N} rep-
resenting the constraints still in place. B§ , we
denote the identified IPM whek constraints are re-
moved as indicated hy/. That is:

Problem 1. (Identification with discarded constraints).
Find 1y | := lg - Where

A= arg Mingio st Y(t) € lo(# (1)), t € (Dn).

Remark 2.As is obvious, note thdf? , = Iy, so that
Problem 1 is a particular case of Problem 1

Two main issues now arise: (i) How should the algo-
rithm <7 be chosen? (ii) Which is the loss in reliability
when Tﬁ“_k is used in place ofy? Point (i) will be
addressed in the next Section 5. Point (i) is instead the
subject of the following Section.4.

4.1 Choice ofe/

In order to achieve the best possible benefit from con-
straints removal, algorithmy should be chosen so as
to discard those constraints whose removal leads to the
largest drop in the optimal cost valu%ﬁ/ . To this

end, one can try to solve Problem 1 for all possible
combinations ofN — k constraints taken out from the
initials N constraints, and then choose that combina-
tion resulting in the lowest value qig. This brute-
force way of proceeding, however, is computationally
very consuming as it requires to sold /(N — k)!k!
optimization problems, a truly large number in gen-
eral.
The main aim of this section is to present a better algo-
rithm for solving the problem of constraints removal.
The approach taken here is in the same spirit of (Bai
et al, 2002) and (MatouSek, 1994) where the problem
of constraints removal has been studied in a slightly
different setting.
e first give some relevant definitions. To avoid nota-
tional cluttering, these definitions are given with ref-
erence to a generic constrained optimization problem:
& min f(2) (20)

min, i=1...,m,
zeLC

stzeyz,

wherez; C RY. The following assumption is assumed
to hold for all problems considered in this paper.



Assumption 1.The solution ofZ exists and is unique.

Remark 3.The uniqueness requirement in Assump-
tion 1 could be removed at the price of introduc-

ing extra technicalities. We have preferred to assume

uniqueness to ease the reading.

Letw(Z?) denote the smallest value 6fz) attainable
for problem 2, viz. w(&?) = f(Z*) wherez" is the
solution of 2. We have the following definition.

Definition 2.(Support constraints). Thé — th con-
straintZ, is a support constrainfor & if w(%?) <
w(Z), where &, is the optimization problem ob-
tained from &2 by removing thel — th constraint,
namely:

P min f(z)stzez,i=1,...,1-11+1,....m

zeZCRY

In other words, a support constraint is a constraint

whose elimination improves the optimal solution. The
following Theorem holds (see (Calafiore and Campi,
2005) for a proof).

Theorem 1.If &2 is a convex optimization problem
(i.e. f(2) is a convex function of andZ; is a convex
set for each), then the number of support constraints
for & is at mosd.

Finally, for all problems considered in this paper, we
require in the following assumption that the optimal

A zy
P N
z,

Figure 1. Constraints of the optimization problem (11)

constraintsF. Finally, suppose that Problem 1 is a
convex problem (this is true e.g. for Problem 1.a) so
that |sq(F)| < d, VF C Dy, according to Theorem 1
(|- | denotes cardinality).

The following Algorithm «7* optimally discardsk
observations. Yet, instead of considering all the pos-
sible combinations ofN — k constraints from theN
initials ones, it only considers a subset of situations.
Precisely, it constructs a tree of optimization problems
as follows: the root is given by Problem 1, with the
initial set of constraint®y; each problem in the tree is
obtained from a parent problem simply removing one
of the parent problem support constraints. In the end,
one simply has to solve the optimization problems at

solution with the sole support constraints in place is levelk in the tree (that is witlk constraints removed).

the same as the optimal solution with all constraints Formally
(see Example 1 after the assumption for a degenerateaenotes t

case where this does not apply).

Assumption 2Given a problemZ as in (10), con-
sider the following optimization problem

P miznf(z) s.t. the support constraints gf
Vi
are satisfied

Example 1.Consider the following optimization prob-
lem:

min 2z (12)

L St.(z1,2) € ZaNZpyNZg,
Z1,2p

whereZ,, Z, andZ; are as in Figure 1. In this case,
only Z, is a support constraint as removiy or

Z. the optimal solution does not change. However,
considering the optimization problem subject Zg
only leads to a different solution than the original
problem.

Go back now to the problem of optimally removing
k constraints from the initial set of constraints associ-
ated toDy (with a little abuse of notation, we will say
“constraintsDy”). Given a subseF of Dy, we will
denote byw(F) the smallest value gig attainable for
the optimization Problem 1 obtained by substituting
Dn with F. We will also denote by &) and by

the algorithm goes as follows (hef&ﬂ_i

he constraints of theh problem at level,
while M; is the number of problems at leviehndX is

a variable that at the end of the algorithm contains the
optimal set ofN — k constraints).

Algorithm @7*
0. Dy:=Dn; X:=D}; Mo=1 i:=0;
1. Mi+1 ::0
FOR h=1 TO M
FOR I =1 TO [saDf ;)|
M|i+1h2:1 '\'\ﬂi+l+1
DN+—(i—71>. ' :=D{_; —sq(D}_;)
IF i+1=k AND w(D) "M < w(x)

THEN X := D) "D
END
END
IF i<k THEN i:=i+1; GO TO 1.
ELSE «*(Dy) =X

The following theorem holds true.

Theorem 2.Algorithm o7* is optimal in the sense that
it returns a set oN — k constraints resulting in the
largest drop of the cost valye;.

Proof: see (Campét al.,, 2005).

In Algorithm <7*, only support constraints are rele-

sG(F), respectively, the set of support constraints and vant to building a tree level from the previous one. In

the i-th support constraint of the problem with the

general, given a set of constrair®§, ;, in order to



spot which among these the support constraints are, Probn {R(5 ) > 1—¢€} > 1-30.
one has to solve the optimization problems obtained
by removing one by one the constraintsDin, and
test if the optimal solution changes. In the following
we provide an evaluation of the total number of opti- Remark 4. Theorem 3 states that, M data points are
mization problems one has to solve to implemefit. observed, the reliability of the optimal squti@ﬁik

In «7* the computation of support constraints has to of Problem 1is no worse than % € with high prob-
be repeated for all the problems in the tree, from level ability greater than + 3. As a matter of fact, since
0 to levelk — 1. Since for each problem there are at constraints in Problem’lare random (they depend
mostd support constraints, the number of problems at on a realizatiorx(1),...,x(N) of the data-generating
leveli is at mostd'. Moreover, each of these problems stochastic procesi(t)}), the resulting optimal inter-
hasN — i constraints. Thus, a bound to the number of val modellY , is random itself. Therefore, its reliabil-

Proof: see (Campét al,, 2005).

problems whiche7* requires to sczlve il +(N—1)- ity R(1i7 ) can be equal to % ¢ for a given bunch of
d+...+(N—k-1)-d“T <N- dd—jll. Note that this ~ random observations and not for another. In the theo-
number is much smaller tha! /k! (N — k)!. rem, 1— & refers to the probabilitPN =P x ... x P

As an additional remark, since support constraints of observing a “bad” multi-sampbg1),...,x(N) such
have to be active constraints,(Bf, ;) can be deter-  that the reliability ofiY , is less than 1 «.
mined bY Seamh”_‘g among active constramt@hf_i Remark 5.Note that fork = 0, equation (12) reduces
only. This may significantly reduce the number of o
optimization problems to test. NI

S5=—_(1—g)N9 (13)

5. RELIABILITY OF IPMS (N—d)td!

This is the condition guaranteeifly) > 1 — € with
In this section, we tackle the fundamental issue of probability no less than 4 3.
assessing theeliability of the IPM Iﬁ_k, identified ) o
according to Problent {see Section 4). The reliability ~Remark 6.1t is perhaps worth noticing that, oné¢
result applies to any algorithn¥ and, in particular, to ~ and 6 have been fixed, the reliability dﬁ/—k/\ls not
«/* discussed at the end of the previous section. simply the reliability ofIy_k, even thoughlyy , is
Assume that the observed ddbg are generated as obtained through an optimization problem subject to
a realization of a bivariate (strict sense) stationary N — k constraints. The reason for this is that tke
process{x(t)} = {#(t),y(t)}, ¢(t) € ® C R" and  constraints to be removed from the initibl are a
y(t) € Y C R. Stationarity says that the system is op- posterioriselected (so as to eliminate the constraints
erating in steady-state. Apart from this, no assumption which lead to untightness). For this reason, we have
is made. The system can be e.g. linear corrupted byR(I{ ) < R(In_«) as it can be easily verified from
noise, nonlinear corrupted by noise, or anything else. equations (12) and (13).

Definition 3. Let | be a given IPM. Theeliability of Remark 7.Theorem 3 can be also used to designe an

| is denoted byR(l) and is the probability that a new IPM identification experiment. Indeed, suppose to fix

unseen daturtg,y), independent by but generated ~ €,5. Then, equation (12) can be used to determine

according to the same mechanism, is consistenthyith the numberN of observations and the numbkrof

ie. constraints to be removed so as to identify through
R(1) = Prok{y € 1($)}, Problem 1an IPMIAﬁf_k having reliability 1— &, with

whereP is the probability ofx(t) € R™1, probability (confidence) & o.

Remark 8.From equation (13), a bound to the number
N of samples required to attain a certain reliability 1

€ with confidence 1 & can be explicitly computed.
Theorem 3.Assume that{x(t)} = {¢(t),y(t)} is an In fact, after some cumbersome calculations, one can
independent and identically distributed sequence withfind that N = L% In% +2d(1+ %In %)j +1 (] =
unknown probability measurg. Suppose also that integer part), i.e. thaN scales basically agin ;.
Problem 1is aconvexconstrained optimization prob-  This greatly improves with respect to the bound given
lem so that the number of its support constraints is jn (Calafiore and Campi, 2002). In particular, the
no greater thaml (see Theorem 1), and that the so- |og-dependence o allows one to obtain a high
lution of Problem 1is unique (if not, suitable tie-  ¢onfidence without increasing N very much. A similar
break rules could be used as explained in (Calafioretype of complexity bound has been derived in the

The precise assessmentR{lY ) in the i.i.d. case is
given by the following theorem.

and Campi, 2005)). context of scenario based optimization in (Calafiore
Then, for anye € (0,1) andd such that and Campi, 2004).
|
5= N (1—g)N-9-k  (12)  Remark 9(Dependent observations). Theorem 3 can

(N—d—k)d'K be extended to the case of non independent observa-
it holds that tions. For example, wheBn = {X(t)i=1,. N} iS gen-



erated by arM-dependent stochastic process (Bosq,

1998), it is quite straightforward to prove that Theo-
rem 3 still holds true if equation (12) is substituted
with:

N! w!
(N—d)ldl (W —K)Ik!

whereW = | (N—d(2M +1))/M].

0= '(1_5)W_k7

6. NUMERICAL EXAMPLES

Data were generated g&) = u(t)(1+wy (t)) +wa(t)
whereu(t) = ¢(t) was the explicative variable and
was aWGN(0,1) (WGN = white gaussian noise),
wi(t) =~ WGN(0,0.01), andw,(t) was a sequence of
independent random variables taking valuest+Q,
—1 with probability 098, Q01 and 001 respectively.
wo(t) merely added outliers to data points.

After collecting 177 observationgt), y(t), we sought
an explanatory interval predictor model of the form
(2),(3),(4) withn =1, i.e.

(1) ={y(t) : y(t) =Ju(t) +e
le| <y, & € Ber }.
We setug = y+0.7r (note thatE[|u(t)|] = 0.7), and
solving Problem 1 we got as optimal IPM parame-
tersc = 0.708,r = 0.537, y = 0.024 andpg = 0.4.
The so obtained set-valued mb@(t)) is depicted

(1)
41

AL N L O =N W

12 3 o0

Figure 2. Output interval predictor model identified on
the basis of thél = 177 available observations.

AG b Lo - nw e

T2 3 o0
Figure 3. Optimal interval predictor model wikh= 1
discarded observations.

in Figure 2 along with the collected data points. As it
appears, such IPM is untight because of just a single

outlier. For this reason, we discardkd-= 1 observa-
tions according to the optimal algorithma™ described
in Section 4, and solving Problemve found the IPM
depicted in Figure 3. We gat = 1.013,r = 0.231,

y = 0.024, andpug = 0.19. Precisely, discarding one
observation yielded a 50% reduction of the cagt

For what concerns the reliability of the identified
IPMs, Theorem (3)-priori states that, with proba-
bility at least equal to + 6 = 0.99, R(l) is no less
than Q9 if no constraints are removed and no less
than 0873 whenk = 1 constraints are removed (the
reliability loss is evaluated as@7).
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