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Abstract: The paper presents a method for the constrained Moving Horizon
Estimation of origin-destination (OD) matrices for traffic networks. In traffic
systems split ratios are important parameters for OD estimation and for control
problems as well. The paper treats the general constrained Moving Horizon
Estimation problem for traffic systems modelled in terms of linear time varying
system and solves the split rate estimation process. The estimation is subjected to
equality and inequality constraints. A numerical example is solved to demonstrate
the Moving Horizon Estimation of split variables.Copyright c©2005 IFAC
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1. INTRODUCTION

Traffic engineering makes dynamic or static anal-
ysis and synthesis of automotive vehicle technolo-
gies possible. The main goal of engineering is
planning and managing traffic systems.

The examination of the dynamic aspect of traffic
control in a traffic system needs the previously
measured or estimated volumes of vehicles. Since
measuring of certain variables in the dynamic
description is rather costly, one tries to predict
them.

The permanently varying demand on road net-
works, regarding mainly intersections or motor-
ways, needs to be estimated. Firstly, because traf-
fic volumes can only be measured at the input
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or at the output point of the section, not in the
intersection itself. Secondly, the most important
task in course of traffic planning is the coordinate
control of more than one intersection, which is
based on estimated variables. The need could be
defined by the dynamic OD (Origin Destination)
matrix, which shows the links among the entries
and exits in a given intersection.

One divides the intersection into three parts such
as entry, exit and internal flows. The measure-
ment of both the entry and the exit flows might
be assumed. Traffic density cannot be measured
without error, so the idealized flows play role in
theoretical aspects only. A model setup of entry-
exit travel demands regarding an intersection al-
lows estimation methods to determine the internal
link flows. The key of the model buildup is split
parameter ratios. The split rate determines the
percentage of turning vehicle entering the traffic
system. If one assumes that these turning rates
are slowly varying split probabilities, the methods
to determine probabilities are called split ratio



methods (Cremer and Keller, 1981), (Nihan and
Davis, 1987). The split rates define a turning
proportion. The stochastic view on creating the
model was elaborated in (Nihan and Davis, 1989).

There exist many estimation techniques, for giv-
ing reliable estimation on dynamic OD matrix,
their results, however, could be different. The
short review on OD estimation begins with the
Least Squares (constrained or not), based on stat-
ical methods such as Likelihood methods(Nihan
and Davis, 1989) and Kalman filtering (Cremer
and Keller, 1987), (Cremer and Keller, 1981),
(Cremer, 1983,Baden-Baden, Germany), or Bayesian
estimator (van der Zijpp, 1997, Greece). Some-
times, combined estimators (using constraints or
apriori knowledge about the intersection) can be
applied.

Not only static constraints can be given, but also
dynamic ones. In certain lanes for example traffic
jams may occur, at intersections some of the split
rates may be temporarily zero. The goal of the
approach presented in the paper was to find a
solution that makes it possible to give constraints
during the estimation process. Constraints must
be taken into account in course of dynamic OD
estimation. A class of optimal state estimation
methods is called Moving Horizon Estimation
(MHE) method (Findeisen, 1997), (Rao, 2000),
(Tyler and Morari, 1996). The MHE can be con-
sidered as the dual of the Model Predictive Con-
trol, though some special assumptions must be
given regarding filter stability. Another advantage
of Moving Horizon Estimation can be the fact
that constraints assumption can be combined in
the estimation process. In the following section
the Moving Horizon state estimation method is
applied to a basic intersection model(Kulcsár and
Varga, 2004; Varga et al., 2004).

The paper is divided into 5 chapters. Following
a short introduction, the general problem is de-
scribed in the first section. The second section
briefly summarizes the MHE principles and shows
how they can be applied to traffic systems. The
third part gives a numerical example. The conclu-
sion contains further research issues.

2. THE PROBLEM

One of the basic elements in traffic network sys-
tems are intersections. A general intersection is
given in Figure 1. It is supposed that the propor-
tions of entry-flow split, according to the destina-
tions, are variant. No traffic lights at this intersec-
tion and the right hand side of road is regularized,
since from the point of view of estimation, one
only takes the time varying input and output
volumes into account. Traffic regulation, however

can be applied in model description. In this case
the mathematical model for the dynamic process
of exit volume is rather elementary.
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Fig. 1. A simple intersection

To show the problem the following variables are
defined:

• qi(k) traffic volume (the number of vehicles)
entering the intersection from entrance i,
during time interval k = 1, 2, ..N

• yj(k) traffic volume (the number of vehicles)
leaving the intersection from exit j, during
time interval k = 1, 2, ..N

• xij(k) the percentage of qi(k) (split rate) that
is destinated to exit j, k = 1, 2, ..N .

Let us consider the following intersection model

yj(k) =

m
∑

i=1

qi(k)xij(k) + vj(k), (1)

where i = 1, ..n and j = 1, ..m. vj(k) is a zero
mean noise term. The input measurement is a
noisy term, since qi(k) = q̃i(k) + ζi(k), with the
same assumption for the noise ζi(k) as above.

Split variables are independent trials. The model
and its constraints are given by

xij(k + 1) = xij(k) + wij (2)

1 ≥ xij ≥ 0 (3)
m

∑

j=1

xij(k) = 1. (4)

The random variation in split parameter is small,
and wij(k) is a zero mean random component.
All random components ζ, v, w are mutually in-
dependent terms. The scheme of the MH observer
is given in Fig. 2. For the sake of simplicity, let
us arrange all the elements of the OD matrix in a
single vector and use the following notations:

xk = [xij(k)]T

wk = [wij(k)]T

vk = [vj(k)]T
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Fig. 2. The MHE observer

The problem is to observe states xk under cer-
tain conditions. The latest estimation of the split
parameters can be treated as a filtering problem.
The fact that constraints have to be taken into
consideration makes the task difficult. In the pre-
sented case, two types of constraints are applied
(inequality and equality), but further constraints
may be implemented. When using state estima-
tion, it is extremely difficulty to constraints put
on the observer. In the following section one tries
to emphasize the effectiveness of the constraint
Moving Horizon Estimation (MHE) method as a
reliable state observer of split ratios.

3. CONSTRAINED SPLIT RATE
ESTIMATION

Let us consider the following discrete linear time-
variant system

xk+1 = Axk + Gwk (5)

yk = Ckxk + +vk (6)

with x0 given. Wk is the random state noise
vector, vk the measurement noise vector, x(t)
the state vector. A, G are constant parameter
matrices, Ck is time-variant output map of the
dynamic system.

In our case one may neglect the control input,
since the split rate, and G = A = In where n is
the number of states (i.e. the number of turning
rates). These parameters are unknown, because
in most cases only input and output detectors are
installed in intersections.

In reality, the states of a dynamic system can-
not be measured directly. Usual state estimation
methods either for linear, or for nonlinear cases
are available from the literature.

The most popular estimation methods are based
on least squares method (LS) with a recursive
form. Recursive algorithm formulation allows the
step-by-step calculation of the estimated state.

Regarding dynamic systems, the most obvious
optimal state estimation can be batch estimation

(full information). This approximation can be ap-
plied to nonlinear systems without linearization.
The general Batch Estimator offers the possibility
to threat constraints during estimation.

The batch estimator is an infinite horizon state
estimator. When applying batch estimation, the
entire past behavior of the system is known.

min
(x̄0,ŵ−1|k,...,ŵk−1|k)

Ψk

Ψk = ŵT
−1|kQ−1

0 ŵ−1|k +

+

k−1
∑

j=0

ŵT
j|kQ−1ŵj|k +

+

k
∑

j=0

v̂T
j|kR−1v̂j|k,

subject to:

x̂0|k = x̄0 + ŵ−1|k

x̂j+1|k = Ax̂j|k + Gŵj|k

yj = Cx̂j|k + v̂j|k

0 ≤ xk ≤ 1
m

∑

j=1

xjk = 1.

However, Batch Estimator, even for a small state
space is intractable from the point of view of
numerical computation, as the Batch Estimator
window is infinite.

The Moving Horizon Estimation scheme can be
seen in Figure 3.
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Fig. 3. General Moving Horizon Estimation pro-
cess

Let the generalized MHE optimization criteria be
defined by the following functional



min
(x̄k−N−1,ŵk−N−1|k,...,ŵk−1|k)

Ψk

Ψk = ŵT
k−N−1|kQ−1

0 ŵk−N−1|k +

+

k−1
∑

j=k−N

ŵT
j|kQ−1ŵj|k +

+
k

∑

j=k−N

v̂T
j|kR−1v̂j|k + Ψ∗

k−N ,

subject to:

x̂k−N |k = x̄k−N + ŵk−N−1|k

x̂j+1|k = Ax̂j|k + Gŵj|k j = k − N − 1, . . . , k − 1

yj = Cx̂j|k + v̂j|k j = k − N − 1,

0 ≤ xk ≤ 1
m

∑

j=1

xjk = 1, . . . , k

with R−1, Q−1 which are symmetric positive semi-
definite noise weighting matrices. While Q−N |k

penalizes initial state x̄k−N , R−1 weights the
output prediction error and Q−1 penalizes all
estimated state noise.

If the expected output is small, R−1 has to be
chosen large, compared to Q−1, and the resulting
sensor noise vector becomes small, compared to
ŵj|k. On the other hand, if the measurements
are not reliable, Q−1 should be chosen large,
compared to R−1.

Ψ∗
k−N is the arrival cost to the analogue of the cost

to go in MPC technique. The arrival cost sum-
marizes all knowledge about the best estimation
before the N-th step. Regarding the unconstrained
linear case, the arrival cost can be expressed ex-
plicitly. If state or noise inequality constraints,
or nonlinearities are present, we do not have an
analytic expression to generate the arrival cost.
Though an analytic approach is unavailable, an
approximate cost may be given. When inequality
constraints are inactive, the approximation is ex-
act. Therefore, the poor choosing of the arrival
cost leads to the filter’s instability. To find the
initial condition of General MHE, we used a batch
estimation for the first N − 1 step estimates.
The stability of the MHE filter is effected by the
choosing of the initial condition and the weighting
matrices, as well.

To slide between windows the filtered estimate
update is preferred. The use of the Kalman Filter
ensures another possibility of state estimation.
The Kalman Filter has been widely applied in
traffic systems. This has been published in numer-
ous papers e.g. (Cremer and Keller, 1987),(Keller
and Ploss, 1987, Amsterdam). This method, based
on Gaussian distributions of random variables, is
defined on a probability framework of the un-

known split parameters. Kalman filter equations
(Kalman, 1960) can be formulated as recursive
ones started with an initial condition. The optimal
estimation depends on the choosing of state noise
covariance (Q) and on the output noise covariance
(R) weights. The Kalman estimator can be ap-
plied, subject to inequality constraints, by using
stochastic programming (van der Zijpp, 1997).
The connection between Kalman filtering and full
information estimation is known.
Applying the MHE method to a simple intersec-
tion with a moving horizon window with 1 step
length, one can write as follow

min
(x̄0,ŵk−2|k,ŵk−1|k)

Ψk

Ψk = ŵT
k−2|kQ−1

0 ŵk−2|k +

+ ŵT
k−1|kQ−1ŵk−1|k +

+ v̂T
k−1|kR−1v̂k−1|k

+ v̂T
k|kR−1v̂k|k + Ψ∗

k−N ,

subject to:

x̂k−1|k = x̄k−1 + ŵk−2|k

x̂k|k = Ax̂k−1|k + Gŵk−1|k

yk−1 = Cx̂k−1|k + v̂k−1|k

yk = Cx̂k|k + v̂k|k

0 ≤ xk ≤ 1
m

∑

j=1

xjk = 1. . . . , k

where m depends on the layout of the intersection.

4. EXAMPLE

As an illustrative example, let us consider the
following simple traffic system. Let us suppose we
have two different input directions and two com-
mon output directions, with 4 split variables. The
system (simplified intersection from Fig. 1)can be
described in the following state-space form

xk+1 = xk + uk + wk

yk = Ckxk + vk,

where xk =
[

x13 x14 x23 x24

]T
is the state vector

containing the turning rates, wk is the state noise
term, a zero mean random signal,uk denotes the
systematic variation component in it, vk is the

measurement zero mean noise, yk =
[

y3 y4

]T
is

the output traffic volume, Ck is the time variant
output map of the system, depending upon the
geometry of the intersection. In our case Ck is
given by



Ck =

[

q1 0 q2 0
0 q1 0 q2

]

qk+1 = q̃k + ζk

where qk =
[

q1 q1

]T
means the detected noisy

input volume of the vehicles into the intersection.
The permanently varying input sequence turns
the intersection model in a discrete time varying
one. ζk is the zero mean random signal.

One should point out that in split parameters usu-
ally two types of variation are allowed: the random
variation term, and the systematic components.
The time average of these terms is assumed to be
zero. The simulation result can be seen in Fig. 4.
Let us suppose we have 1 sample in every second,
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Fig. 4. Time simulation of the input and output
measurements and the not smoothed turning
rates

during 1 hour. For solving constrained MHE nu-
merically, one may apply quadratic programming.
It solves the problem above, while, additionally,
satisfies equality and inequality constraints.

Let the horizon comprise 1 sample, and by ap-
plying diagonal R, Q and R0, Q0 weighting the
following results are gained, see in Fig. 5. The
results have been compared to those done by
Kalman Filter estimation process.

By solving a one-step backward receding horizon
problem, one should solve a quadratic functional
at each step under the dynamic equality, the split
inequality and equality constraint. To check the
fulfil of the constraints, in Fig. 5 one can see
, that unlike to Kalman filtering, in the MHE
case the estimation process does not exceed either
0, or 1. Additionally, the estimated sum of the
split parameters is equal to the one in Receding
Horizon case (see in Fig. 6).

5. CONCLUSIONS

The paper summarizes the Moving Horizon Esti-
mation (MHE) approach for a simple intersection.
The turning rate estimation in like traffic systems
gives space for further control problem solving.
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Fig. 5. Time simulation of the estimation pro-
cesses regarding x23 and x24

10 20 30 40 50

0

5

10

15
x 10

−12 MH estimated approach

S
pl

it 
ra

te

10 20 30 40 50

0

0.5

1
KF estimated approach

Samples (sec)

S
pl

it 
ra

te
 

Fig. 6. Equality constraint regarding x23+x24−1.

The nonlinear turning rate estimation problem
could be regarded a constraint estimation, and
equality, respectively, inequality constraints are
needed to be taken into consideration. The MHE
process can be solved by quadratic problem for-
mulation.

The paper shows a numerical example to demon-
strate MHE based split parameter estimation.
Furthermore, the general MHE technique for non-
linear traffic system processes can be applied in
online traffic control.
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