
AN INTEGRATED DESIGN APPROACH TO
MULTILEVEL FAULT TOLERANT CONTROL

OF DISTRIBUTED SYSTEMS 1

Claudio Bonivento ∗ Marta Capiluppi ∗

Lorenzo Marconi ∗ Andrea Paoli ∗,2

∗ Center for Research on Complex Automated Systems
(CASY) “Giuseppe Evangelisti”, DEIS, Department of
Electronic,Computer Science and Systems, University of

Bologna, Via Risorgimento 2, 40136 Bologna, Italy

Abstract: This work deals with the description of a design procedure for hierar-
chical Fault Tolerant Control (FTC) of large-scale systems. Following a functional
perspective, a procedure for the modular design of the diagnostic and reconfigura-
tion algorithms which run at different levels of the hierarchy is presented. Moreover
a hierarchical decision logic algorithm is obtained by means of the theoretical
machinery of the supervisor theory of discrete event systems. All the material
presented here represents a brief summary of the ideas and results obtained in
the context of the European Project IFATIS (proposal number IST-2001-32122).
Copyright c© 2005 IFAC

Keywords: Large-scale systems, Fault-tolerant systems, Fault diagnosis, Complex
systems, Supervisory control.

1. INTRODUCTION

A (real-time) distributed (or large scale) system
consists of a set of nodes interconnected by a
real-time communication network. Viewed from
an higher level, a node can be replaced by an
abstraction of its functional and temporal proper-
ties, hiding the irrelevant details of the implemen-
tation. Nowadays in complex control applications
the distributive aspect has grown in importance.
From a functional point of view, there is practi-
cally no difference whether a task is implemented
using a centralized or decentralized architecture,

1 This research has been supported by EC-Project IFATIS
(intelligent fault tolerant control in integrated systems)
funded by the European Commission in the IST pro-
gramme 2001 of the 5th EC framework programme (IST-
2001-32122).
2 Corresponding author Dr. Andrea Paoli, E-mail:
apaoli@deis.unibo.it.

however a decentralized architecture has to be
preferred for the implementation of hard real-time
systems. The property which makes distributed
systems perfect candidate for investigation in fault
tolerance area is dependability. This means that,
in the design of a distributed system, it is possi-
ble to implement well-defined error-containment
regions, achieving in this way fault tolerance. An
exhaustive description of distributed systems can
be found in (Koepetz, 1997), while, concerning the
topic of fault-tolerance in distributed systems, a
good introduction to the problem can be found
in (Lee and Anderson, 1990), (Johnson, 1989),
(Jalote, 1994) and (Cristian, 1991).

In distributed control systems every component
must provide a certain function in order to make
the overall system working satisfactorily. When a
fault affects the system, then it causes a failure,
i.e. the termination or degradation of the ability of



an item to perform its required function. We refer
as failure mode to the effect by which a failure is
observed on the failed system. This means that a
failure mode represents a loss of a functionality.
In distributed systems a single component failure,
propagating into the system structure, may lead
to a catastrophic system failure. For this reason
fault tolerance (i.e., as explained in (Blanke et
al., 2003), the property of performing a required
function with predefined performances even in
faulty situations) is a key issue in distributed sys-
tems. Fortunately the distributive aspect of these
systems helps in achieving the fault tolerance task:
if there exists a one-to-one mapping between func-
tions and nodes, the cause for a malfunction can
be immediately diagnosed and the faulty node
isolated. Weak elements in this framework are
control loops: automated systems are vulnerable
to faults such as defects in sensors, in actuators
and in controllers, which can cause undesired re-
actions and consequences as damage to technical
parts of the plant, to personnel or to the environ-
ment. Then the design of a Fault Tolerant Control
(FTC) architecture is of crucial importance and
solutions aiming at adapting the control strategy
to the presence of the faults are needed in order
to achieve prescribed performances also for the
faulty system.

This work attempts to present a unified frame-
work for fault tolerant control of distributed sys-
tems summarizing some of the ideas and results
obtained in the context of the European Project
IFATIS. Following a functional approach, a modu-
lar/hierarchical fault tolerant control architecture
is presented and some design guidelines which
make use of standard failure and functional analy-
sis tools are presented. An example of application
to a physical system of the general concepts illus-
trated in this work is illustrated in (Bonivento et
al., 2005).

2. GENERAL FRAMEWORK

2.1 IFATIS Architecture

According to the description given in (Bahir et al.,
2003) and (Maier and Colnaric, 2002), the overall
distributed system can be divided in partial pro-
cesses, a set of physical/logical controlled systems
whose aim is to achieve a certain functionality in-
strumental for the operation of the whole system.
Within each partial process a physical level and
a control level (denoted as fault tolerant module)
exist. This control level aims to control the partial
process and to manage the set of possible working
modes associated to it in order to achieve the main
functionality (completely or in a degraded form
if a fault occurs). The implementation of each
partial process needs allocation of resources, i.e.

plant components and controller modules. This
allocation is dynamic, dependent on mode and
reconfiguration decisions. The hierarchical archi-
tecture for fault tolerant control of such a system
consists of three modular levels: the plant level,
the control level, the supervision level. At control
level Fault Tolerant modules are considered. Each
module has a specific function to achieve. Each
function can be performed in different working
modes (for example nominal working mode or
reconfigured/degraded working modes). Note that
Fault Tolerant module stands for a possible hi-
erarchical structure of modules. Above this level
there is a supervision level, called Global/Group
Resource and Reconfiguration Manager (GRRM)
level, whose aim is to monitor performances of the
system and to manage physical resources.

2.2 Supervisory control of Discrete Event Systems

Talking about supervisory control of a discrete
event system (DES) means dealing with the prob-
lem of a given DES (considered in the un-timed
level of abstraction), whose behavior must be
modified by feedback control in order to achieve
a set of given specifications. In other words the
problem consists in designing a discrete event
supervisor S which is able to restrict the behav-
ior of the uncontrolled system G to a desired
subset specified by specifications. The interaction
paradigm between S and G is very simple: the su-
pervisor observes some (possibly all) of the events
that G executes. Then it tells G which events are
allowed next. More precisely S has the capability
of disabling some feasible events of G. In this
sense S exerts a dynamic feedback control on G.
In general there will be some events that cannot
be disabled by the supervisor, i.e. they are uncon-
trollable. A supervisor is said to be admissible if it
never tries to disable an uncontrollable event. As
mentioned above, the supervisor is introduced in
order to restrict the unsatisfactory behavior of the
uncontrolled DES to a given specification. In order
to synthesize supervisors the starting point is to
define an automaton H which expresses the spec-
ification for the controlled DES. There are sev-
eral kind of specifications arising in applications.
Besides others, very common are illegal states
specifications, event alternance specifications and
illegal string specifications. Given an uncontrolled
DES G and a specification automaton H, the
specification is said to be controllable with respect
to G if H contains all the part of G that cannot
be prevented because uncontrollable. In the same
way H is said to be observable with respect to G if
H requires the same control action for two strings
that cannot be separated because of unobservable
events.There exists a theorem (known in literature
as COT, i.e. controllability and observability the-



c

c

c

(a) Example of functionality tree with re-
configurable functionalities (label c).

FM0

FM1

FM4

(b) Example of fault tree for diagnosis with
diagnosable failure modes (label ri).

Fig. 1. Example of the use of fault tree analysis to design a distributed control system.

orem) which states that if and only if H is observ-
able and controllable with respect to G, then there
exists a dynamic feedback supervisor restricting
the behavior of G to H. If this is the case, the next
step is to build a convenient representation of S.
It is easy to prove that if the COT holds then an
automaton representation of S is given by H itself
and the feedback interconnection between G and
S is given by the standard parallel composition
operation H ‖ G. More details on this theory can
be found in (Cassandras and Lafortune, 1999).

3. CRITERIA AND DESIGN TOOLS

As stated in previous sections a functional crite-
rion to design the distributed FTC system has
been used. Due to its distributed aspect, partial
processes composing the system may be complex
systems as well, and the main functionality may
be achieved by the fulfillment of several nested
sub-functionalities. For this reason it is possible
to highlight the functionality map linked to each
partial process using a Functionality Tree (see
(Andrews and Moss, 2002)). This is a graphical
tool by which the global functionality of the sys-
tem, the root of the tree, is expressed in terms
of sub-functionalities (i.e. intermediate nodes of
the tree) instrumental for the achievement of
the main functionality. Strictly related to the
functionality tree is the Fault Tree which shows
the map of losses of functionalities as a conse-
quence of faulty conditions (see (Andrews and
Moss, 2002), (Blanke et al., 2003)). The fault tree
can be interpreted as a complementary version
of the functionality tree. Losses of functionalities
at each level of the tree are seen as caused by
losses of functionalities sitting at lower levels until
the main elementary cause, given by the physical
fault, is reached.
The fault and functionality tree provide a useful
tool for the design of both diagnostic and recon-

figuration algorithms. The problem of diagnosis
is strictly connected to the ability of detecting
a possible loss of functionality due to a fault. In
this respect it makes sense to define failure modes
as the loss of functionalities (nodes of the fault
tree) which are detectable by static as well as
dynamic elaboration of the available measures. In
general it is possible to associate to each failure
mode in the fault tree one or more residual signals
(see Fig. 1(b)). In this sense the functionalities
hierarchy described in the functionality tree is
reflected in the hierarchy of the diagnostic system
aimed to detect the losses of these functionalities.
In this respect the whole residual matrix can be
constructed through a bottom-up procedure by
inspection of the fault tree.
As far as the reconfiguration problem is con-
cerned, the graphical description given by the
functionality tree can be used to identify a hi-
erarchy also in the reconfiguration algorithm (see
Fig. 1(a)). To this end we define Reconfigurable
Functionalities as those functionalities on which
the designer has some degree of controllability. It
is possible to identify a set of control functions
associated to each reconfigurable functionality,
namely a set of reconfiguration actions instru-
mental to implement the reconfiguration of the
specific functionality. A possible tool to identify
reconfigurable functionalities is structural anal-
ysis (see (Staroswiecki et al., 1999)). Linked to
each reconfigurable functionality, there exists a
local supervisor which has the role of supervising
the reconfiguration actions to be launched in the
case that a specific functionality has been selected
for reconfiguration. In particular, linked to each
reconfigurable functionality, there is a set of local
Working Modes (WM) and a set of local Control
Functions implementing a number of control re-
configurations. Aim of the local supervisor is to
choose the reconfigurable functionality which is
the closest to the estimated failure mode. As a
matter of fact the rationale behind this criterion



FDI Unit
Event

Generator

Decision Logic

Unit

Fig. 2. Supervisor structure.

is to reconfigure the system as close as possible
to the original cause of the fault condition, in
order to shrink the region in which the deviation
from nominal conditions is compacted. According
to this description, each local reconfiguration su-
pervisor can be thought as depicted in Fig. 2. The
goal of the FDI unit is to provide, on the basis of
the different local diagnostic information (resid-
ual signals), an estimation of the failure mode
observed in a specific process/sub-process. The
failure mode estimation is then processed by the
Event Generator unit whose aim is to raise re-
quests of working mode changes. All the requests
of WM changes issued by local supervisor units
must be then managed by a decision logic unit at
system-level which validates or not the requests
according to a global vision of the associated
part of process checking the consistency of the
different requests raised by the different modules.
The theoretical key tool used in the design of this
last phase, as described in the next section, is
the supervisor theory for Discrete Event Systems
(DES).

4. DESIGN OF THE SUPERVISORY SYSTEM

4.1 Low level supervision

The design procedure for the decision logic unit
of each local supervisor (intermediate level super-
visory system) can be described by the following
steps. The step number 0, detailed in the follow-
ing, is indeed not needed for the supervisor design
but only for verification purposes (see (Cassandras
and Lafortune, 1999)).

Step 0: Starting from the set of working modes
associated to a local reconfigurable functional-
ity, it is possible to build the DES modeling
the system, with respect to the considered fault.
The initial state (let call it WM0) models the
nominal condition for the system. A fault event
f , observable but not controllable, moves the
system into a faulty state (F). At this point it
is possible to force one of the reconfiguration
actions (WM) enlightened in the tree. Events
named wmi are controllable and observable
events used by supervisors to force a recon-
figured working mode (state WMi). Repeating
the procedure for all possible faults affecting
the system a DES modeling its behavior is ob-
tained. In general this automaton (named G)

will be composed by a nominal state, a set of
faulty states and a set of reconfigured states (see
Fig. 3 (a)).

Step 1: Consider now the j-th reconfigurable
functionality at level i in the functionality tree.
According to the specifications behind the re-
configuration of this functionality, it is possible
to design a DES composed by a number of
states WMi whose activation is governed by
events wmi. These ones describe the set of re-
configuration actions which must be taken in
order to reconfigure the specific functionality
and, possibly, functionalities at lower levels.
Events wmi can be, in general, both control-
lable and not-controllable by the supervisor.
Not-controllable events are, for instance, due to
implicit reconfigurations which do not need an
explicit activation (passive/implicit fault toler-
ant controllers). This step is illustrated by Fig.
3 (b).

Step 2: The DES resulting from Step 1 can then
be systematically modified to design a DES
describing the desired controlled behavior if the
j-th functionality is reconfigured. In particular
the DES designed in Step 1 is completed with
an activating prefix given by concatenation of
failure mode events (f) and activating events
(ak). The automaton modeling the i-th level
specification will be denoted as Hi (see Fig. 3
(c)). Activating event ai can be used by event
generator to set the i-th level reconfiguration.

Step 3: The controlled behavior of the system
at level i (i = 1 . . . n), denoted with Ki, can be
computed as Ki = H1 ‖ . . . ‖ Hi ‖ G. Note that
it is not required that Hi by itself is controllable
with respect to G, but H1 ‖ . . . ‖ Hn must
result controllable and observable with respect
to G. If this is the case the controllability
and observability theorem holds (i.e. Kn =
H1 ‖ . . . ‖ Hn) and hence there exists a
unique modular controller given by the set of
n supervisors H1,H2, . . . ,Hn (see Fig. 3 (d)).

4.2 High level supervision

Last phase of the design procedure is the de-
sign of the high level supervisors (Group/Global
RRM). In case the reconfiguration of a certain
partial process has impact in the resource allo-
cation and/or the change of working mode in
a certain module has to be joined to a change
of working mode in a different module, then



Fig. 3. Design procedure of the low level supervision system.

the responsibility of managing the new working
mode switching is demanded to the Group/Global
RRM. It is composed just by a Decision Logic
Unit which processes all the events generated by
the different Local RRM and manages the working
mode changes involving reallocations in resources
linked to different groups. Moreover the state of
the Group and Global RRM can change due to
external commands issued by external operators.
The starting point is to identify the specifications
which are behind the design of the decision logic.
These are precisely presented in the following:

Group Selection: description on how the dif-
ferent partial processes and resource units can
be grouped (application dependent).

Modules/Resources map: this represents an
offline planning on how the different working
modes associated to a specific module can be
allocated in the available resources.

Partial processes as DES: the outcome of the
design phase regarding the Local reconfigura-
tion manager is a DES describing the desired
FT behavior of a particular partial process.
This is a set of states associated to different
failures and reconfigured situations and a set of
events describing transitions between states.

Resource Units as DES: this task amounts
in describing local resources as automata by
specifying states and events inducing transi-
tions between states as follow:
• States: in the simplest case the states de-

scribing the status of resources reduce to
three: idle (namely the resource is capable
to run additional functionalities), busy (no
other functionalities can be located on that
resources) and faulty (a resource monitor
has detected a local fault, for instance of a
computer). The busy state can in general
be split in several sub-states expressing dif-

ferent cases in which the resource can be
busy.

• Events: change of working modes inducing
transitions between idle and busy states
(these are, for the supervisor, controllable
events which, on the basis of the model of
the specific resource and the allocation pol-
icy followed in the past, commute between
the two states); occurred faults, i.e. not-
controllable but observable events arising
whenever the local resource monitor detects
a fault in the supervised resource.

Reconfiguration specifications: this task in-
volves the specifications regarding interlaced
reconfigurations between modules. As also re-
marked above, one of the goal of the Global
(Group) RRM is to check the consistency of the
functionalities achieved by the different mod-
ules and possibly to inhibit the requests of work-
ing mode change raised by the Local RRM in
case of conflict. The specification at this level
regards the identification of possible conflict-
ing Working Modes and consequent remedial
actions.

Working modes Urgency: this information
is needed whenever a reconfiguration must be
actuated in presence of limited resources. It ex-
presses which functionality is the most urgent in
order to meet global specifications. The urgency
information depends, in general, on the actual
working mode.

Starting from this information, it is possible to
automatically design the decision logic unit of the
group/global supervisor. The composition of the
discrete models of the functional units and physi-
cal resources, yields an automaton which captures
the whole information about the feasible working
modes, according to the actual working mode and
to the resources availability. From this automaton



the decision logic can be designed following the
supervision theory on the basis of performance
specifications and reconfiguration requirements.

The algorithm to design the Group Global RRM
can be described by the following steps:

(1) Replica of the DES associated to a module
according to the Modules/Resources map:
whenever a particular partial process can be
allocated onto different resources, it is nec-
essary to model its image on the particular
resource. Since a supervised partial process
is described by a DES (Kn), this step can
be carried out simply by building a replica of
Kn to model its image on the j-th resource
(let call this new DES Kn/j).

(2) Since a partial function can be allocated just
on a subset of the possible physical resources,
it is fundamental to model the possibility
that the particular process is in stand by on
the considered resource. For this reason the
automaton Kn/j is enriched with a new state
SBj and a controllable event called sbj . If
state SBj is active in Kn/j then n-th module
is not running on the j-th resource. Event sbj

is used by the high level supervisor to move
process from a resource to another.

(3) The group selection information and the
Modules/Resources map together tell which
partial processes and which resources com-
pose a group. Hence it is possible to build
the i-th group DES model (named GRi) as
a composition of all the possible images of
partial processes and all the resources.

(4) Using the information coming from the Mod-
ules/Resources map, the Reconfiguration spec-
ifications and the working modes urgency it is
possible to design a specification controllable
with respect to GRi and, in this way, the i-
th Group RRM supervisor (GRSi). In other
words the i-th group specifications tell the
system how to manage hardware reconfigu-
rations to allocate in an optimal way pro-
cesses over resources, how to manage hard-
ware faults and how to deal with functional-
ities conflicts. It is easy to understand that
this step is strongly application-dependent.

(5) Finally the controlled behavior of the i-th
group can be found as Li = GRSi ‖ GRi.

The global behavior of the system is therefore
obtained composing all the controlled group be-
haviors Li (L =‖(i=1...r) Li). The DES obtained
in this way represents the global uncontrolled be-
havior. The Global RRM supervisor behavior is
defined when designing a controllable specification
with respect to L .

5. CONCLUSIONS

In this work a design procedure for hierarchical
Fault Tolerant Control of large-scale systems has
been presented. It has been shown how, under a
functional perspective, it is possible to identify a
procedure for the modular design of the diagnostic
and reconfiguration algorithms running at differ-
ent levels of the hierarchy. Moreover it has been
shown how to use the theoretical machinery of
the supervisor theory of discrete event systems to
design a hierarchical decision logic algorithm.

REFERENCES

Andrews, J.D. and T.R. Moss (2002). Reliability
and Risk Assessment. Professional Engineer-
ing Publishing.

Bahir, L. El, R. Gros, M. Kinnaert, C. Parloir and
J.Yamé (2003). Final report on WP2. IFATIS
deliverable D2-5.

Blanke, M., M. Kinnaert, M. Staroswiecki and
J. Lunze (2003). Diagnosis and fault-tolerant
control. Springer-Verlag.

Bonivento, C., M. Capiluppi, L. Marconi and
A. Paoli (2005). Distributed fault tolerant
control of a two-tanks system. Technical re-
port. CASY-DEIS, University of Bologna.
Contact person Marta Capiluppi.

Cassandras, C.G. and S. Lafortune (1999). In-
troduction to discrete event systems. Kluwer
Academic Publisher.

Cristian, F. (1991). Understanding fault-tolerant
distributed systems. Comm. ACM 34(2), 57–
78.

Jalote, P. (1994). Fault tolerance in distributed
systems. Prenctice Hall. Englewood Cliffs,
N.J.

Johnson, B. (1989). Design and analysis of fault-
tolerant digital systems. Addison Wesley.
Reaing, Mass, USA.

Koepetz, H. (1997). Real-time systems: design
principles for distributed embedded applica-
tions. Real-time systems. Kluwer academic
publishers. London.

Lee, P.A. and T. Anderson (1990). Fault tolerance:
principles and practice. Springer Verlag. Vi-
enna, Austria.

Maier, U. and M. Colnaric (2002). Some basic
ideas for intelligent control systems design.
Proceedings of the XV IFAC World Congress,
Barcelona, Spain.

Staroswiecki, M., S. Attouche and M.L. Assas
(1999). A graphic approach for reconfigurabil-
ity analysis. 10th Int. Workshop on principle
of diagnosis, Loch Awe.


