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Abstract: A simple robust yaw controller for the nonlinear single-track model
is designed, making use of active di�erential and active roll control systems.
Robustness is studied for uncertainties in several model parameters, namely the
vehicle longitudinal velocity, the road adherence coe�cients and the hand wheel
angle. Constructive nonlinear dynamics are employed for the controller design. The
controller parameters are selected by solving an optimization problem. Stability of
the solution is guaranteed by constraints that ensure a minimal distance between
the nominal operating point and a stability boundary in the space of uncertain
parameters. c©2004 IFAC
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1. INTRODUCTION

Active control systems are becoming increasingly
common in modern vehicles. The aim of these
systems is to enhance the driving dynamics while
maintaining the stability of the system under
parametric uncertainty. Parametric uncertainty
arises both from varying driver inputs, e. g. the
longitudinal velocity and the hand wheel angle, as
well as varying environmental conditions, e. g. the
road conditions. In most studies, e. g. (Ackermann
et al. 2002, Güvenç et al. 2004), a linearized vehi-
cle model is used for the control design, neglecting
nonlinear phenomena that may arise when the
uncertain parameters deviate from their assumed
nominal values. Previous investigations (Ono et
al. 1998) however show that vehicle models exhibit
a saddle node bifurcation (Wiggins 1990), beyond

which trajectories become divergent causing the
vehicle to fall into spin.
In this work an optimization approach based
on nonlinear dynamics theory (Mönnigmann and
Marquardt 2002) is employed for the control de-
sign. This method ensures robust stability of the
solution by enforcing a speci�ed distance from
a stability boundary in the space of uncertain
parameters. The stability boundaries are derived
from bifurcation theory and take the nonlinear-
ities of the system into account. The nonlinear
single-track model (Mitschke 1990) is used for
the vehicle dynamics and a simple yaw rate con-
trol realized by both active di�erential and active
roll control systems is considered. The nonlinear
dynamics approach is used to �nd a controller
setting that minimizes the tracking error for sta-
tionary cornering and guarantees vehicle stability



for varying road conditions, longitudinal velocity
and hand wheel angle.
The paper is structured as follows. Section 2
brie�y introduces the method used for the robust
controller design and tuning. Section 3 discusses
the vehicle model and the control structure. Sec-
tion 4 presents the main results of the paper,
namely the robust controller tuning for three dif-
ferent scenarios. Finally, section 5 discusses the
obtained results and summarizes the main con-
clusions.

2. BACKGROUND

The problem studied in this work is the robust
stabilization of an uncertain nonlinear system
when the control law structure is given. The closed
loop system is described by equations of the form

ẋ = f(x, α, p) , x(t0) = x0 , (1)
where x ∈ Rnx denotes the state vector, α ∈ Rnα

the vector of the uncertain system parameters
and p ∈ Rnp the vector of the tunable control
parameters. The function f is assumed to be
su�ciently smooth with respect to x, α and p.
Furthermore, it is assumed that the uncertain
system parameters α vary within known ranges,
i. e.

αi ∈
[
α

(0)
i −∆αi, α

(0)
i + ∆αi

]
, i = 1, . . . , nα ,

where α
(0)
i denotes the nominal value of the pa-

rameter αi and ±∆αi its upper and lower uncer-
tainty bounds.
Since the controller structure is given, the con-
trol design task is reduced to tuning the con-
troller parameters, so that the closed loop system
is stable under the parameter uncertainties. To
this end, a recently presented approach (Mön-
nigmann and Marquardt 2002, Mönnigmann and
Marquardt 2003) for process optimization in the
presence of parametric uncertainty is employed.
The basic idea of this approach is to utilize critical
manifolds, e. g. stability boundaries, that separate
the parameter space into regions where the equi-
librium points of system (1) exhibit qualitatively
di�erent behavior. Another type of a critical man-
ifold that could also be handled by this approach
is boundaries in the complex plane limiting the
real and imaginary parts of the eigenvalues of the
linear approximation of system (1). The approach
enforces a lower bound on the parametric distance
between a nominal operating point α(0) and the
nearest point α(1) on the critical boundary. This
lower bound ensures that the complete range of
the uncertain parameters is at a safe distance
from the critical boundary. Note that, since this
approach only considers steady states of system
(1), the desired property of the operating point,
e. g. stability, can only be guaranteed for varia-
tions of the uncertain parameters α that are slow

compared to the time scale of the system. In other
words, the parameters α may only vary quasistat-
ically with respect to the system dynamics.
Figure 1 shows a critical boundary and the un-
certainty region for nα = 2. The parameters have
been normalized with their uncertainties ∆α. For
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Fig. 1. Robust operating point α(0) with stabil-
ity boundary (thick line) and normal vector
direction r (dashed thick line).

the normalized parameters α/∆α the minimal
distance between the nominal point α(0) and the
closest critical point α(1) is equal to √nα. Since
the shortest distance between α(0) and α(1) occurs
along the direction of the normal vector r to the
critical manifold (Dobson 1993), the robustness
constraints can be stated as

α(0) = α(1) + l
r

‖r‖
l ≥ √

nα .
(2)

The normal vector r can generally be computed
by a system of equations of the form

0 = G(x(1), x̃, p(0), α(1), r) , (3)
where x̃ denotes auxiliary variables. For a detailed
description of G(·) the reader is referred to (Mön-
nigmann and Marquardt 2002).
Conditions (2) and (3) must hold in order to
guarantee robust stability within the speci�ed
range of parametric uncertainty. Furthermore, if
additionally a cost function φ is given, a robust
optimum of system (1) with respect to φ can
be found by solving the following constrained
nonlinear program

min
x(0),α(0),p(0)

φ(x(0), α(0), p(0)) (4a)

s. t. 0 = f(x(0), α(0), p(0)) , (4b)

0 = G(x(1), x̃(1), α(1), p(0), r) , (4c)
0 = α(1) − α(0) + l

r

‖r‖ , (4d)

0 ≤ l −√nα . (4e)

3. VEHICLE MODEL

The nonlinear single-track model (Mitschke 1990)
is utilized for the control design, while the actu-



ator dynamics are ignored. The tyre model pre-
sented by Pacejka and Bakker (1991) is used.
Two body controllers are employed, namely a yaw
controller and a roll controller. The closed loop
system is depicted in Figure 2.
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Fig. 2. Vehicle model

3.1 State space model

The equations of motion for each degree of free-
dom are
m(V̇ +Ur) = µ1Fy1+µ2Fy2+µ3Fy3+µ4Fy4 , (5)
Izz ṙ=b(µ1Fy1 + µ2Fy2)− c(µ3Fy3 + µ4Fy4)+ Tr ,

(6)
ϕ̈ =

1
Jx

[−Dxϕ̇− Φxϕ + mspayhcg

+sin(ϕ)gmsphcr] + Tϕ ,
(7)

where m denotes the total vehicle mass, V and
U the vehicle sideslip and longitudinal velocities,
respectively, r the vehicle yaw rate, µi the road ad-
herence coe�cients, Fyi the lateral forces, Izz the
yaw moment of inertia, b and c the longitudinal
distances between the center of mass and the front
and rare axles, respectively, Tr the engine torque,
Jx the inertia around the longitudinal axis, Dx

the damping of the angle velocity, Φx the spring
constant, ϕ the roll angle, msp the vehicle chassis
mass, αy the vehicle lateral acceleration, hcg the
height of the center of gravity, g the acceleration
of gravity, hcr the height of the center of roll and
Tϕ the roll torque.

3.2 Body controllers

Two body controllers are used, a yaw and a roll
controller.
The aim of the yaw controller is to track a body
yaw rate reference rref , which is de�ned as a
function of the longitudinal velocity U and the
road steering angle δn

rref =
arU

1 + brU2
δn. (8)

The road steering angle δn is mainly in�uenced by
the hand wheel angle δhwa

δn = Kδδhwa (9)

where Kδ is a constant steering ratio. It is further
assumed that the hand wheel angle is upper
bounded by a function of the longitudinal velocity

δhwa,max = 160
1 + brU

2

arU2
(10)

so that the lateral acceleration does not exceed the
upper physical limit of the gravity acceleration.
The yaw body control law is a simple saturated
P-controller

Tr = −sat(Kr(r − rref)) (11)
where

sat(x)=
{

x, if |x| ≤ Tmax

Tmax · sign(x), elsewhere . (12)

Since, as mentioned in Section 2, the function f
in system (1) should be su�ciently smooth, the
saturation function (12) cannot be incorporated
in its current form in the study. Therefore it has
been approximated by a suitable smooth function.
The roll body controller is used for the implemen-
tation of active suspension and is de�ned by

Tϕ = −Φxϕref −mspayhcg−
sin(ϕref)gmsphcr.

(13)

The reference signal ϕref is given by

ϕref = Kϕ

(
ay

g

)3

. (14)

The parameter Kϕ in�uences the driving comfort
of the passengers. It is �xed at a typical value
Kϕ = 0.05 in all the results presented below.
The roll torque is actively distributed between the
front and rear axles. The distribution factor λ may
vary within the range [0.15, 0.85]. To incorporate
the e�ect of the active suspension including roll
torque and its distribution, the corner loads Fzi

are calculated as




FzF L

FzF R

FzRL

FzRR



=




1
2

c

b + c
mg + mF g +(1−λ)

Tϕ

sf

1
2

c

b + c
mg + mF g −(1−λ)

Tϕ

sf

1
2

b

b + c
mg + mRg − λ

Tϕ

sf

1
2

b

b + c
mg + mRg + λ

Tϕ

sf




(15)

where mF and mR denote the front and rear axle
vehicle mass, respectively and sf the track width.
As the corner loads Fzi govern the lateral forces
Fyi, there is an indirect e�ect of λ and Tϕ on the
yaw rate r. Therefore λ is used here for yaw rate
tracking by introducing a second P-controller

λ=





0.15, λ ≤ 0.15
(1−αy

g
)Kλ(rref−r)+0.5, 0.15< λ< 0.85.

0.85, λ≥0.85
(16)

The saturation of λ is again approximated by an
appropriate smooth function.



3.3 Model uncertainties

The robustness of the proposed control law is
studied against variations of the following param-
eters:
• longitudinal velocity U [m/sec]: U ∈ [15, 50];
• road adherence coe�cients µ1, µ2, µ3, µ4 ∈

[0.1, 1.2];
• hand wheel angle δhwa ∈ [0, δhwa,max].

For simplicity µ1 = µ3 = µl and µ2 = µ4 = µr is
assumed in the following.

4. RESULTS

A number of di�erent case studies have been
considered. The aim in all case studies is to �nd
a controller setting that
(1) minimizes the tracking error and
(2) guarantees stability for the ranges of uncer-

tainties described in section 3.3.
Due to the symmetry of the vehicle model only
positive steering wheel angles � equivalent to left
turns � need to be considered. Minimization of
the steady state yaw rate tracking error rref − r is
addressed by the objective function

φ = (rref − r)2 (17)
of the optimization problem (4), where mini-
mal distance constraints on the critical stability
boundary ensure the requested robustness.
Ideally the controller setting found by the opti-
mization should stabilize the vehicle for the entire
range of parametric uncertainty as described in
Section 3.3.
The following three case studies have been inves-
tigated:
(1) proportional yaw rate controller with tuning

parameters Kr, Tmax and Kλ;
(2) gain scheduling of the controller tuning in the

longitudinal velocity U ;
(3) gain scheduling of the controller tuning in the

adherence coe�cients µl, µr.
In all case studies lower and upper limits of the
tuning parameters are set to Tmax[Nm] ∈ [0, 2000],
Kr ∈ [0, 50000] and Kλ ∈ [−100, 100].
In order to apply the optimization approach pre-
sented in Section 2, nominal values of the uncer-
tain parameters have to be speci�ed. A natural
choice for the nominal values are the mean values
of the uncertainty ranges
µ(0)

r = 0.65 , µ
(0)
l = 0.65 , U (0) = 32.5 m/s .

For the hand wheel angle the worst case scenario
δhwa = δhwa,max is considered in all presented case
studies.
Bifurcation analysis of the bicycle model shows
that the dynamic behavior of the vehicle is dom-
inated by a saddle node bifurcation, where a

real eigenvalue of the linearized model crosses the
imaginary axis. In Figure 3a steady state continu-
ation in the road adherence coe�cient µl reveals
such a saddle node bifurcation for the nominal val-
ues of U (0) = 32.5 m/s and µ

(0)
r = 0.65. A critical

manifold composed of saddle node bifurcations is
obtained by varying a second parameter as shown
in Figure 3b for µr.
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Fig. 3. (a) Equilibrium curve with saddle node
bifurcation • and (b) critical manifold of
saddle node points in the (µr, µl) parameter
plane.

4.1 Case study 1

The �rst case study is the basis for the other two
scenarios. Parametric robustness against loss of
stability is ensured by normal vector constraints
on the saddle node bifurcation. The solution of the
optimization problem (4) reveals, however, that
it is not possible to stabilize the vehicle for the
entire range of uncertainty de�ned in Section 3.3,
i. e. no operating point can be found that satis�es
the robustness constraints (4c)�(4e). The opti-
mization problem (4) is therefore modi�ed and
used to �nd the most robust controller setting.
This is equivalent to maximizing the distance l
between the nominal operating point α(0) and the
nearest critical point α(c). The cost function (17)
is therefore set to

φ = −l (18)
and the inequality constraint (4e) of the optimiza-
tion problem (4) is omitted. The aim of minimiz-
ing the tracking error is completely neglected in
this case study, giving way to the maximization
of the parametric distance, i. e. of the robustness
region.

Table 1. Case study 1
max. stability range contr. setting yaw rate
U [15, 50] Kr 13497 r(0) 0.15
µr [0.39, 0.91] Tmax 0 r

(0)
ref

0.33
µl [0.39, 0.91] Kλ -50 r/rref 0.45

In Table 1 the solution of this reformulated opti-
mization problem shows that the maximal range
of the robustness region is achieved by a controller
setting where the maximal output of the yaw rate



controller Tmax is set to 0. Obviously, the great-
est stability is achieved by the passive vehicle.
As stated above, the objective of minimizing the
tracking error is not addressed and r is 55% o�
the reference signal rref at the steady state. The
results show that even for the passive vehicle the
achieved robustness region is somewhat smaller
than the originally requested range of uncertain-
ties, especially for µl and µr. It can be concluded
that the road adherence coe�cients have a greater
in�uence on the stability than the longitudinal
velocity U . A comparison of the achieved and the
requested range is shown in Figure 4.
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Fig. 4. Case study 1: The achieved range of stabil-
ity (solid box) is smaller than the requested
(dashed box).

Note that Kr has no in�uence on the stability
if Tmax = 0. Loosely speaking, the high value of
Kr is chosen arbitrarily by the NLP solver. The
parameter Kλ of the control law (16) is tuned to
a negative value. For the positive tracking error
rref − r this results in small values of λ, which
corresponds to a shift of the roll torque to the front
axis that has a stabilizing e�ect on the vehicle.

4.2 Case study 2

This case study investigates if relaxation of the
requested robustness range in the longitudinal
velocity U has a positive in�uence on the range
of stability achieved for the road adherence co-
e�cients µl and µr. This is equivalent to in-
troducing gain scheduling in U . Three ranges
U1 ∈ [15, 25], U2 ∈ [25, 40], U3 ∈ [40, 50] are con-
sidered. The in�uence though of the diminished
ranges of U on the achieved ranges of stability
for (µr, µl) turns out to be very small. These
stability ranges are again smaller than those ac-
tually requested. Normal vector constraints are
therefore used to maximize this region rather than
guaranteeing stability of the optimized operating
point for a speci�ed range of uncertainty. As in the
previous case, the passive vehicle with Tmax = 0
achieves the largest range of stability. The results
obviously con�rm the �nding of the �rst case
study that the longitudinal velocity is the less
critical parameter.

4.3 Case study 3

The two previous case studies show that it is
not possible to �nd a proportional controller that
stabilizes the vehicle for the complete range of the
uncertainties. Even the passive vehicle becomes
unstable for some values inside the uncertainty
region speci�ed in Section 3.3, with the adherence
coe�cients µr, µl as the more critical parameters
with respect to loss of stability. Therefore, in the
third case study a di�erent approach is proposed.
A gain scheduling strategy for various ranges of
µ is considered. It allows for the relaxation of the
requested robustness ranges in these critical pa-
rameters. The following ranges and corresponding
nominal operating points are studied

µ
(0)
r,1 = µ

(0)
l,1 = 0.45 , µ1 ∈ [0.3, 0.6]

µ
(0)
r,2 = µ

(0)
l,2 = 0.75 , µ2 ∈ [0.6, 0.9]

µ
(0)
r,3 = µ

(0)
l,3 = 1.05 , µ3 ∈ [0.9, 1.2].

(19)

These ranges of µ can be envisioned as three
typical types of road conditions, the �rst repre-
senting an icy road, the second a wet road and
the third a dry road. The range of U remains
unchanged in comparison to the �rst case study.
Clearly this approach requires measurement or
reliable estimation of the road conditions. Several
strategies for the estimation of the road friction
have been suggested in the literature, see e. g.
(Gustafsson 1997). It is, however, out of scope for
this paper to discuss these approaches in detail.
For simplicity we assume here that measurement
of µ is available.

Table 2. Case study 3: icy road
max. stability range contr. setting yaw rate
U [15, 50] Kr 50000 r(0) 0.12
µr [0.3, 0.6] Tmax 0 r

(0)
ref 0.33

µl [0.3, 0.6] Kλ -25 r/rref 0.36

The results of the optimization for the �rst operat-
ing point given in Table 2 show that the speci�ed
robust stability is achieved. As in the previous
scenarios, the yaw torque is switched o� by the
optimization, in order to increase the robustness.
This results again in a large di�erence between
the yaw rate r and the reference signal rref .

Table 3. Case study 3: wet road
max. stability range contr. setting yaw rate
U [15, 50] Kr 6483 r(0) 0.23
µr [0.6, 0.9] Tmax 1506 r

(0)
ref

0.33
µl [0.6, 0.9] Kλ 12 r/rref 0.70

The results of the optimization for the second
operating point for values of µ in the middle range
between 0.6 and 0.9 are summarized in Table 3.
Compared to all previous results a qualitatively
di�erent solution is obtained in this case. The
reduced speci�ed range of robustness allows for



a controller tuning that not only guarantees sta-
bility for the smaller range of uncertainty but also
addresses the objective of minimizing the tracking
error. In this case study the original optimization
problem (4) and cost function (17) are used. In
contrast to the previous results Kr > 0 and
Tmax > 0, which means that yaw torque is used
for yaw rate control. The switched sign of Kλ

indicates that this control loop is now also used for
tracking and not for increasing robustness. With
this controller tuning the tracking error is reduced
signi�cantly compared to the results obtained in
the previous scenarios.

Table 4. Case study 3: dry road
max. stability range contr. setting yaw rate
U [15, 50] Kr 50000 r(0) 0.29
µr [0.74, 1.36] Tmax 2000 r

(0)
ref

0.33
µl [0.74, 1.36] Kλ 100 r/rref 0.88

The third operating point considers only high
values of µ around µ(0) = 1.05. The results
in Table 4 show that in contrast to all previous
results the speci�cations for the robust stability
are not re�ected in the controller settings. Even
with all the controller parameters at their upper
limits Kr = 50000, Tmax = 2000 and Kλ = 100,
the distance to the nearest critical point is twice
as large as the minimal distance speci�ed by the
desired ranges of the robustness region. For this
point only the minimization of the tracking error
is addressed, stability is ful�lled regardless of the
parameter settings.
The robustness areas and critical manifolds around
the three nominal operating points are depicted in
Figure 5. These diagrams show that the stability
boundary reaches further into the (µr, µl) plane
with the tighter control tuning of the 2nd and 3rd
operating point. the reduced robustness criteria
can, however, be guaranteed for all three operat-
ing points.
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Fig. 5. Scenario 3: (a) icy road µ = (0.3, 0.6);
(b) wet road µ = (0.6, 0.9); (c) dry road
µ = (0.9, 1.2)

5. CONCLUSIONS

The robust stabilization problem of a simple non-
linear vehicle model has been considered. The
well known single-track model has been used for
the vehicle dynamics and the performance of a
simple proportional yaw rate feedback controller

has been studied with respect to uncertainties in
the vehicle longitudinal velocity, the hand wheel
angle and the road adherence coe�cients. For the
control design constructive nonlinear dynamics
have been used that ensure a lower bound on the
parametric distance from the stability boundary.
It has been shown that it is not possible to �nd
a single tuning for the considered P-controller
that stabilizes the complete range of uncertainty.
The results of the gain scheduling in µ show that
reduction of the tracking error and guaranteed
stability are only possible for fairly good road
conditions and reduced robustness ranges. For the
icy road only the passive vehicle without yaw rate
control could meet the requested robustness. An
extension of the current study that includes the
transient behavior of the vehicle states is currently
under investigation.
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